Cho hai hình thang ABCD và ABEF có chung đáy lớn AB và không cùng nằm trong một mặt phẳng :
a) Tìm giao tuyến của các mặt phẳng sau :
(AEC) và (BFD); (BCE) và (ADF)
b) Lấy M là điểm thuộc đoạn DF. Tìm giao điểm của đường thẳng AM với mặt phẳng (BCE)
c) Chứng minh hai đường thẳng AC và BF không cắt nhau
Cho hình chóp S.ABCD, có đáy là hình bình hành tâm O. Gọi M, N lần lượt là trung điểm của SA, SD. a) Chứng minh MN // (ABCD). b) Chứng minh SB // (OMN). c) Chứng minh (OMN) // (SBC). d) Gọi P, Q lần lượt là trung điểm của AB, ON. Chứng minh PQ // (SBC).
Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Gọi M, N lần lượt là trung điểm AB, SC.
a) Tìm giao tuyến của hai mặt phẳng (ABN) và (SCD).
b) Chứng minh BN // (SDM).
c) Tìm giao điểm của các đường thẳng AN và MN với mặt phẳng (SBD).
Bài 5. Cho hình chóp S.ABCD có đáy ABCD là hình thang đáy lớn AB và AB = 2CD. Gọi E, F làn lượt là trung điểm của các cạnh SA, SB. a) Tìm giao tuyến của hai mặt phẳng (SAB) và (SCD). b) Chứng minh rằng EF // (SCD). c) Chứng minh rằng DE // (SBC). d) Lấy điểm M thuộc cạnh SD. Gọi (P) đi là mặt phẳng qua M và song song với mặt phẳng (SAB). Tim giao tuyến của (P) và (SBC).
Cho hình chóp S.ABCD có đáy ABCD là hình bình hành tâm O và cho M là một điểm thay đổi trên cạnh SC. Một mặt phẳng (P) thay đổi qua AM và song song với BD. Gọi I, J lần lượt là giao điểm của ME với CB và MF với CD. Chứng minh ba điểm I, A, J thẳng hàng ?
Cho hình lăng trụ tứ giác ABCD.A'B'C'D'
a) Chứng minh rằng hai đường chéo AC' và A'C cắt nhau và hai đường chéo BD' và B'D cắt nhau
b) Cho E và F lần lượt là trung điểm của hai đường chéo AC và BD.
Chứng minh MN = EF ?
Cho hình chóp S.ABCD, đáy ABCD là hình bình hành , có tất cả các cạnh bằng a. Gọi E, F lần lượt là trung điểm của SA, SB Gọi M là một điểm thuộc cạnh BC sao cho BM = 2MC.
a, Chứng minh AB // (MEF)
b, Xác định thiết diện của hình chóp bị cắt bởi mặt phẳng (MEF) và tính diện tích thiết diện
Hình chóp SABCD có đáy ABCD là hình bình hành. Gọi M, N lần lượt là trung điểm của cạnh SC, SD. Chứng minh MN//(SAB). Gọi mặt phẳng alpha là mặt phẳng chứa AM và song song với BD, mặt phẳng alpha cắt SB tại E. S1, S2 là kí hiệu cho diện tích của các tam giác SME và SBC. Tính tỉ số S1/S2
Cho hai mặt phẳng \(\left(\alpha\right)\&\left(\beta\right)\) cắt nhau theo giao tuyến m. Trên đường thẳng d cắt \(\left(\alpha\right)\) ở A và cắt \(\left(\beta\right)\) ở B ta lấy hai điểm cố định \(S_1,S_2\) không thuộc \(\left(\alpha\right)\), \(\left(\beta\right)\). Gọi M là một điểm di động trên \(\left(\beta\right)\). Giả sử các đường thẳng \(MS_1,MS_2\) cắt \(\left(\alpha\right)\) lần lượt tại \(M_1,M_2\)
a) Chứng minh rằng \(M_1M_2\) luon luôn đi qua một điểm cố định
b) Giả sử đường thẳng \(M_1M_2\) cắt giao tuyến m tại K. Chứng minh rằng ba điểm K, B, M thẳng hàng
c) Gọi b là một đường thẳng thuộc mặt phẳng \(\left(\beta\right)\) nhưng không đi qua điểm B và cắt m tại I. Chứng minh rằng khi M di động trên b thì các điểm \(M_1\) và \(M_2\) di động trên hai đường thẳng cố định thuộc mặt phẳng \(\left(\alpha\right)\)