cho tam giác ABC cân tại A nội tiếp đường tròn (O). vẽ trung tuyến AM của tam giác ABC. gọi B' đối xứng với B qua O .Vẽ qua A vuông góc với CB' và cắt BC' tại H chứng minh AH là tiếp tuyến của đường tròn (O)
Cho đường tròn (O,R) và đường tròn (O',r)tiếp xúc ngoài tại A.Kẻ tiếp tuyến chung ngoài tiếp xúc (O) và (O') lần lượt tại B và C.Kẻ đường kính CD cùa đường tròn (O').Qua D kẻ đường thẳng tiếp xúc đường tròn (O) tại E.CMR:DE=DC
giúp tui câu này đc ko chiều tui thi r cho tam giác ABC cân tại A nội tiếp đường tròn (O). vẽ trung tuyến AM của tam giác ABC. gọi B' đối xứng với B qua O .Vẽ qua A vuông góc với CB' và cắt BC' tại H chứng minh AH là tiếp tuyến của đường tròn (O)
Cho đường tròn (O) và hai đường kính AB,CD vuông góc với nhau.Từ một điểm M tùy ý trên cung AC,vẽ tiếp tuyến với đường tròn (O) tại M.Tiếp tuyến này cắt đường thẳng CD tại S.CMR:
a)SM2=SC.SD
b)góc MSD=2 lần góc MBA
c)Gọi H là giao điểm của MD với OA và K là giao điểm của CM với AD.CMR:HA.KB=HB.KA
cho đường tròn tâm O và dây AB .Gọi M là điểm chính giữa của cung AB và C là điểm bất kì nằm giữa A và B .Tia MC cắt đường tròn tâm O tại D
a)CM MC.MD=MA^2
b)CM tam giác MBC và tam giác MDB đồng dạng
Giúp mk vs đang cần gâos , chỉ cần phânf c thoi Từ điểm M nằm ngoài đường tròn (O) kẻ 2 tiếp tuyến MA và MB (A, B là hai tiếp điểm ) , trên nửa mặt phẳng bờ OM chứa điểm A kẻ cát tuyến MCD ( MC< MD )với đường tròn (O). Lấy I là trung điểm của của dây CD. a) Chứng minh: tứ giác MBOI là tứ giác nội tiếp b) BI cắt đường tròn (O) tại điểm thứ hai là E. Chứng minh AE // CD c) Kẻ IK // BD . K thuộc AB. Chứng minh CK ⊥ OB
Cho đường trong tâm O bán kính 3cm và một điểm M sao cho OM=5cm. Từ M kẻ tiếp tuyên MA với đường tròn (O) (A là tiếp điểm)
a) Tính độ dài đoạn thẳng AM và giá trị của gicd AMO
b) Qua A vẽ đường thẳng vuông góc với OM tại H,cắt đường tròn(O) tại H,cắt đường tròn(O) tại B(B khác A). Chứng minh MB là tiếp tuyến của đường tròn (O)
c) Kẻ đường kính AC của đường tròn(O). Đường thẳng MC cắt đường tròn tại điểm thứ hai là D. Chứng minh góc MHD bằng góc OCD.
Cho tam giác ABC nội tiếp đường tròn(O).Tia phân giác của góc BAC cắt đường tròn(O)tại A và D.Đường tròn tâm D,bán kính DB cắt đường thẳng AB tại B và Q,cắt đường thẳng AC tại C và P. a)CMR:OA vuông góc PQ b)Gọi K là giao điểm của BC và PQ.CMR:KB.KC=KP.KQ=R^2-DK^2(với DB=R:bán kính đường tròn(D))