* Phân tích
Giả sử điểm M thuộc xy đã tìm được để có MA+ MB là ngắn nhất.
Lấy A’ đối xứng với A qua xy
ta có: MA = MA’
suy ra MA’ + MB cũng ngắn nhất .
Mà A và B lại nằm trên hai nửa mặt phẳng đối nhau có bờ là đường thẳng xy
Nên M phải nằm giữa A’và B tức là MA’ + MB = A’B
Suy ra M phải là giao của A’B và xy.
* Cách dựng
Dựng A’ đối xứng với A qua xy,
Nối A’với B cắt xy tại điểm M
*Chứng minh :
Nối M với A ta có MA = MA’ (A và A’ đối xứng với nhau qua xy)
Mà MA’ + MB = A’B
suy ra MA+MB =A’B là ngắn nhất
Thật vậy: nếu lấy một điểm M’ thuộc xy mà M’ khác M ,
nối M’ với A’ và M’ với B
ta có tam giác M’A’B.
Do đó M’A’ + M’B > A’B
mà M’A’ = M’A’(tính chất đối xứng).
Gọi M là giao của AB và d. Khi đó A, B, M thẳng hàng nên AM + MB nhỏ nhất.
Giả sử có một điểm M’\(\ne\)M, M’ thuộc d
Trong ABM’ có: AM’ + BM’ \(\ge\) AB (bất đẳng thức trong tam giác)
\(\Leftrightarrow AM'+BM'\ge AM+MB\)
Dấu “=” xảy ra khi M’ trùng với M
Vậy AM + MB nhỏ nhất khi A, M, B thẳng hàng