Bài 3. Phép cộng, phép trừ đa thức một biến

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Quoc Tran Anh Le

Cho hai đa thức: \(R(x) =  - 8{x^4} + 6{x^3} + 2{x^2} - 5x + 1\) và \(S(x) = {x^4} - 8{x^3} + 2x + 3\). Tính:

a) R(x) + S(x);                                                 b) R(x) – S(x).

Hà Quang Minh
17 tháng 9 2023 lúc 15:26

a)

\(\begin{array}{l}R(x) + S(x) =  - 8{x^4} + 6{x^3} + 2{x^2} - 5x + 1 + {x^4} - 8{x^3} + 2x + 3\\ = ( - 8 + 1){x^4} + (6 - 8){x^3} + 2{x^2} + ( - 5 + 2)x + (1 + 3)\\ =  - 7{x^4} - 2{x^3} + 2x - 3x + 4\end{array}\)

b)

\(\begin{array}{l}R(x) - S(x) =  - 8{x^4} + 6{x^3} + 2{x^2} - 5x + 1 - ({x^4} - 8{x^3} + 2x + 3)\\ =  - 8{x^4} + 6{x^3} + 2{x^2} - 5x + 1 - {x^4} + 8{x^3} - 2x - 3\\ = ( - 8 - 1){x^4} + (6 + 8){x^3} + 2{x^2} + ( - 5 - 2)x + (1 - 3)\\ =  - 9{x^4} + 14{x^3} + 2x - 7x - 2\end{array}\)


Các câu hỏi tương tự
Quoc Tran Anh Le
Xem chi tiết
Quoc Tran Anh Le
Xem chi tiết
Quoc Tran Anh Le
Xem chi tiết
Quoc Tran Anh Le
Xem chi tiết
Quoc Tran Anh Le
Xem chi tiết
Quoc Tran Anh Le
Xem chi tiết
Quoc Tran Anh Le
Xem chi tiết
Quoc Tran Anh Le
Xem chi tiết
Quoc Tran Anh Le
Xem chi tiết