Sửa đề: \(A=\dfrac{x}{x-4}-\dfrac{1}{2-\sqrt{x}}-\dfrac{1}{\sqrt{x}+2}\) và \(B=\dfrac{3\sqrt{x}}{\sqrt{x}-2}\)
1) Thay x=25 vào biểu thức \(B=\dfrac{3\sqrt{x}}{\sqrt{x}-2}\), ta được:
\(B=\dfrac{3\cdot\sqrt{25}}{\sqrt{25}-2}=\dfrac{3\cdot5}{5-2}=\dfrac{15}{3}=5\)
Vậy: Khi x=25 thì B=5
2) Ta có: \(A=\dfrac{x}{x-4}-\dfrac{1}{2-\sqrt{x}}-\dfrac{1}{\sqrt{x}+2}\)
\(=\dfrac{x}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}+\dfrac{\sqrt{x}+2}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}-\dfrac{\sqrt{x}-2}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\)
\(=\dfrac{x+\sqrt{x}+2-\sqrt{x}+2}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\)
\(=\dfrac{x+4}{x-4}\)