Cho một đa giác đều 18 đỉnh nội tiếp trong một đường tròn tâm O. Gọi X là tập hợp tất cả các tam giác có các đỉnh là các đỉnh của đa giác trên. Tính xác suất P để chọn được một tam giác từ tập X là tam giác cân nhưng không phải tam giác đều
Cho đa giác đều 12 đỉnh nội tiếp đường tròn tâm A. Chọn ngẫu nhiên 3 đỉnh của đa giác đó. Tính xác suất để 3 đỉnh được chọn tạo thành một tam giác không có cạnh nào là cạnh của đa giác đã cho?
Cho 1 đa giác đều 12 đỉnh \(A_1A_2A_3A_4....A_{12}\) nội tiếp đường tròn (O). Chọn ngẫu nhiên 4 đỉnh của đa giác đó. Tính xác suất để 4 đỉnh được chọn tạo ra thành 1 hình chữ nhật
Cho đa giác đều A1A2...An nội tiếp đường tròn (O). Chọn ngẫu nhiên 3 đỉnh bất kỳ của đa giác đó. Tính xác suất để nhận được một tam giác tù.
Cho tập A={1,2,3,4,5,6}. Gọi S là tập hợp các tam giác có độ dài 3 cạnh là các phần tử của A. Chọn ngẫu nhiên một phần tử thuộc S. Xác suất để phần tử được chọn là một tam giác cân bằng.
Chọn ngẫu nhiên ba đỉnh trong 2020 đỉnh của một đa giác đều. Tính xác suất để 3 đỉnh được chọn tạo thành một tam giác đều
Một đa giác đều có 18 đỉnh. Chọn ngẫu nhiên 3 đỉnh . Tính xác suất để ba đỉnh được chọn tạo thành một tam giác cân.
Cho đa giác đều có 60 đỉnh nội tiếp đường tròn (O). Có bao nhiêu tam giác nhọn có 3 đỉnh trong 60 đỉnh của đa giác ?
Gọi S là tập hợp tất cả các số tự nhiên có 3 chữ số đôi một khác nhau được lập từ các chữ số 0,1,2,3,4,5,6. Chọn ngẫu nhiên một số từ tập S. Tính xác suất để số được chọn là một số chia hết cho 6