Cho hình vuông ABCD. Gọi I là một điểm nẳm giữa A và B. Tia DI và tia CB cắt nhau ở K. Kẻ đường thẳng D, vuông góc với DI. Đường thẳng này cắt đường thẳng BC tại L. Chứng minh rằng :
a) Tam giác DIL là một tam giác cân
b) Tổng \(\dfrac{1}{DI^2}+\dfrac{1}{DK^2}\) không đổi khi I thay đổi trên cạnh AB
cho góc nhọn xOy và điểm M nằm bên trong góc E và F lần lượt là hình chiếu của M trên Ox,Oy vẽ EP,FQ vuông góc với OM(P,Q thuộc OM) EF cắt OM tại H.
CMR: \(\dfrac{OQ.QM}{OP.PM}=\dfrac{HF^2}{HE^2}\)
Cho tam giác ABC vuông tại A có đường cao là ah HP = 9 cm HC = 16 cm
a)tính AB AC ah
b)Gọi D và E lần lượt là hình chiếu vuông góc của h trên AB và AC. tứ giác AD he là hình gì
4) cho tam giác ABC có AB = 6cm , AC = 4,5 cm , BC = 7,5 cm . a) C.minh tam giác ABC là hình vuông . b) tính góc B và góc C và đường cao AH . c) lây M bất kì trên cạnh BC . Gọi hình chiếu của M trên AB , AC . Lần lượt là P và Q . C.minh PQ , AM , hỏi M ở vị trí nào thì PQ có độ dài nhỏ nhất
Cho Tam giác ABC vuông tại A, đường cao AH,gọi E và F theo thứ tự là hình chiếu vuông góc của H lên AB, AC. a, chứng minh AE.AB=AF.AC B,tam giác AFE đồng dạng tam giác ABC C, chứng minh AH^3= AE.AF.BC D, BC cố định, tìm vị trí của A để EF có độ dài lớn nhất
Cho một tam giác vuông. Biết tỉ số hai cạnh góc vuông là 3 : 4 và cạng huyền là 125 cm. Tính độ dài các cạnh góc vuông và hình chiếu của các cạnh góc vuông trên cạnh huyền ?
1. Cho tam giác ABC vuông tại C, đường cao CK.
a) Tính BC, CK, BK và AK biết AB = 10cm , AC=8cm.
b) Gọi H và I theo thứ tự là hình chiếu của K trên BC và AC. Tứ giác CHKI là hình gì? Vì sao?
c) Chứng minh; \(\text{CB.CH=CA.CI}\)
d) Chứng minh: \(\dfrac{AI}{BH}=\dfrac{AC^3}{BC^3}\)
e) \(AB\cdot BH\cdot AI=CK^3\)
f) Gọi M là hình chiếu của K trên IH. Chứng minh: \(\dfrac{1}{KM^2}=\dfrac{1}{CH^2}+\dfrac{1}{CI^2}\)
2. Cho tam giác ABC cân tại A, các đường cao AH và BK. Kẻ đường thẳng vuông góc với BC tại B cắt tia CA tại D. Chứng minh:
a) \(BD=2AH\)
b) \(\dfrac{1}{BK^2}=\dfrac{1}{DC^2}+\dfrac{1}{4HA^2}\)
Cho tam giác ABC vuông tại A, AB = 6 cm, AC = 8 cm.
a) Tính BC, góc B, góc C
b) Phân giác của góc A cắt BC tại D. Tính BD, CD
c) Từ D kẻ DE và DF lần lượt vuông góc với AB, AC. Tứ giác AEDF là hình gì? Tính chu vi và diện tích của tứ giác AEDF.