Bài 34. Sự đồng quy của ba đường trung tuyến, ba đường phân giác trong một tam giác

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Quoc Tran Anh Le

Cho góc xOy khác góc bẹt. Dùng compa dựng đường tròn tâm O cắt Ox tại A và cắt Oy tại B. Sau đó dựng hai đường tròn tâm A, tâm B có bán kính bằng nhau sao cho chúng cắt nhau tại M nằm nên trong góc xOy. Chứng minh rằng tia OM là tia phân giác của góc xOy.

Kiều Sơn Tùng
19 tháng 9 2023 lúc 15:40

Ta có: AM = bán kính đường tròn tâm A

BM = bán kính đường tròn tâm B

Mà 2 đường tròn này có bán kính bằng nhau

Do đó, AM = BM

Xét \(\Delta \)OAM và \(\Delta \)OBM có:

OA = OB( = bán kính đường tròn tâm O)

MA = MB (cmt)

OM chung

\( \Rightarrow \) \(\Delta \)OAM = \(\Delta \)OBM ( c.c.c)

\( \Rightarrow \) \(\widehat {AOM} = \widehat {BOM}\) ( 2 góc tương ứng)

Mà OM nằm giữa 2 tia OA và OB

\( \Rightarrow \) OM là tia phân giác của góc AOB.


Các câu hỏi tương tự
Quoc Tran Anh Le
Xem chi tiết
Quoc Tran Anh Le
Xem chi tiết
Quoc Tran Anh Le
Xem chi tiết
Quoc Tran Anh Le
Xem chi tiết
Quoc Tran Anh Le
Xem chi tiết
Quoc Tran Anh Le
Xem chi tiết
Quoc Tran Anh Le
Xem chi tiết
Quoc Tran Anh Le
Xem chi tiết
Quoc Tran Anh Le
Xem chi tiết