a) xét tam giác OAM và tam giác OBM có:
OB=OA(gt)
góc BOM= góc MOA(Ot là tia phân giác của góc xOy)
OM:cạnh chung
\(\Rightarrow\)tam giác OAM= tam giác OBM(c.g.c)
b)vì tam giác OAM= tam giác OBM(câu a)
\(\Rightarrow\)AM=BM(2 cạnh tương ứng)
\(\Rightarrow\)góc OMB= góc OMA(2 góc tương ứng)
Mà hóc OMB+góc OMA=180o(kề bù)
\(\Rightarrow\)góc OMB=góc OMA=180o:2=90o
\(\Rightarrow\)OM vuông góc với AB
c)vì MA=MB(câu b)
Mà OM vuông góc với AB(câu b)
\(\Rightarrow\)OM là đường trung trực của AB
d)xét tam giác NBM và tam giác NAM có
AM=BM(câu b)
góc BMN= góc AMN(=90o)
MN:cạnh chung
\(\Rightarrow\)tam giác NBM= tam giác NAM(c.g.c)
\(\Rightarrow\)NA=NB(2 cạnh tướng ứng)