Cho góc nhọn xOy và một điểm A nằm trong góc đó . Hãy tìm điểm B trên Ox, điểm C trên Oy sao cho tam giác ABC có chu vi nhỏ nhất .
cho góc nhọn xOy và một điểm A nằm trong góc đó . Hãy xác định điểm B trên Ox và điểm C trên Oy sao cho tam giác ABC có chu vi nhỏ nhất .
Cho tam giác ABC nhọn và AH là đường cao. Hãy dựng điểm M trên cạnh AB và N trên cạnh AC sao cho chu vi tam giác HMN nhỏ nhất.
Cho tam giác ABC . Điểm M nằm trên đường phân giác của góc ngoài đỉnh C( M khác C ) . Chứng minh AC + CB < AM +MB .
Cho đường thẳng d và hai điểm A,B nằm cùng phía với d. Tìm điểm M trên d sao cho MA+MB đạt giá trị nhỏ nhất ?
Cho hai đường thẳng c, d cắt nhau và hai điểm A, B không thuộc hai đường thẳng đó. Hãy dựng điểm C trên c, điểm D trên d sao cho tứ giác ABCD là hình thang cân nhận AB là một cạnh đáy (không cần biện luận) ?
cho 2 điểm B , C cố định nằm trên đường tròn (O ; R) và điểm A thay đổi trên đường tròn đó . Hãy dùng phép đối xứng trục để chứng minh rằng trực tâm H của tam giác ABC nằm trên 1 đường tròn cố định .
Hướng dẫn : khi BC không phải là đường kính , gọi H' là giao điểm của đường thẳng AH với đường tròn (O ; R) . Chứng minh rằng H đối xứng với H' qua đường tròn BC .
cho 2 điểm B , C cố định nằm trên đường tròn (O ; R) và điểm A thay đổi trên đường tròn đó . Hãy dùng phép đối xứng trục để chứng minh rằng trực tâm H của tam giác ABC nằm trên 1 đường tròn cố định .
Hướng dẫn : khi BC không phải là đường kính , gọi H' là giao điểm của đường thẳng AH với đường tròn (O ; R) . Chứng minh rằng H đối xứng với H' qua đường tròn BC .
cho 2 điểm B , C cố định nằm trên đường tròn (O ; R) và điểm A thay đổi trên đường tròn đó . Hãy dùng phép đối xứng trục để chứng minh rằng trực tâm H của tam giác ABC nằm trên 1 đường tròn cố định .
Hướng dẫn : khi BC không phải là đường kính , gọi H' là giao điểm của đường thẳng AH với đường tròn (O ; R) . Chứng minh rằng H đối xứng với H' qua đường tròn BC .