Kẻ GH⊥BC tại H
Kẻ MK⊥BC tại K
Xét ΔABC có
G là trọng tâm của ΔABC(gt)
BG cắt AC tại M(gt)
Do đó: M là trung điểm của AC
Xét ΔABC có
BM là đường trung tuyến ứng với cạnh AC(M là trung điểm của AC)
G là trọng tâm của ΔABC(gt)
Do đó: \(BG=\dfrac{2}{3}BM\)(Tính chất ba đường trung tuyến của tam giác)
Ta có: GH⊥BC(gt)
MK⊥BC(gt)
Do đó: GH//MK(Định lí 1 từ vuông góc tới song song)
Xét ΔBMC có
G∈BM(gt)
H∈BC(gt)
GH//MK(cmt)
Do đó: \(\dfrac{GH}{MK}=\dfrac{BG}{BM}\)(Hệ quả của định lí Ta lét)
mà \(\dfrac{BG}{BM}=\dfrac{2}{3}\)(cmt)
nên \(\dfrac{GH}{MK}=\dfrac{2}{3}\)
Xét ΔGBC có GH⊥BC(gt)
nên \(S_{GBC}=\dfrac{GH\cdot BC}{2}\)
Xét ΔMBC có MK⊥BC(gt)
nên \(S_{MBC}=\dfrac{MK\cdot BC}{2}\)
Ta có: \(S_{GBC}:S_{MBC}=\dfrac{GH\cdot BC}{2}:\dfrac{MK\cdot BC}{2}\)
\(\Leftrightarrow\dfrac{S_{GBC}}{S_{MBC}}=\dfrac{GH\cdot BC}{2}\cdot\dfrac{2}{MK\cdot BC}\)
\(\Leftrightarrow\dfrac{S_{GBC}}{S_{MBC}}=\dfrac{GH}{MK}=\dfrac{2}{3}\)
hay \(S_{GBC}=\dfrac{2}{3}\cdot S_{MBC}\)(đpcm)