Chương 5: ĐẠO HÀM

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Nguyễn Thanh Giang

Cho f(x+y)=f(x)+f(y)

Tìm tất cả các hàm số f: R --> R thoả mãn : (Với mọi x,y thuộc R)

\(f\left(x^3-y^3\right)=xf\left(x^2\right)-yf\left(y^2\right)\)

\(f\left(x^5+y^5+y\right)=x^3f\left(x^2\right)+y^3f\left(y^2\right)+f\left(y\right)\) 

@Akai Haruma @Nguyễn Việt Lâm 

Giúp em với ạ, em cảm ơn

 

Akai Haruma
9 tháng 8 2021 lúc 12:16

Bài 1:

Cho $y=0$ thì: $f(x^3)=xf(x^2)$

Tương tự khi cho $x=0$

$\Rightarrow f(x^3-y^3)=xf(x^2)-yf(y^2)=f(x^3)-f(y^3)$

$\Rightarrow f(x-y)=f(x)-f(y)$ với mọi $x,y\in\mathbb{R}$

Cho $x=0$ thì $f(-y)=0-f(y)=-f(y)$

Cho $y\to -y$ thì: $f(x+y)=f(x)-f(-y)=f(x)--f(y)=f(x)+f(y)$ với mọi $x,y\in\mathbb{R}$

Đến đây ta có:

$f[(x+1)^3+(x-1)^3]=f(2x^3+6x)=f(2x^3)+f(6x)$
$=2f(x^3)+6f(x)=2xf(x^2)+6f(x)$

$f[(x+1)^3+(x-1)^3]=f[(x+1)^3-(1-x)^3]$

$=(x+1)f((x+1)^2)-(1-x)f((1-x)^2)$

$=(x+1)f(x^2+2x+1)+(x-1)f(x^2-2x+1)$

$=(x+1)[f(x^2)+2f(x)+f(1)]+(x-1)[f(x^2)-2f(x)+f(1)]$

$=2xf(x^2)+4f(x)+2xf(1)$

Do đó:

$2xf(x^2)+6f(x)=2xf(x^2)+4f(x)+2xf(1)$

$2f(x)=2xf(1)$

$f(x)=xf(1)=ax$ với $a=f(1)$

 


Các câu hỏi tương tự
Nguyễn Thanh Giang
Xem chi tiết
Khánh Ngọc
Xem chi tiết
KP9
Xem chi tiết
Julian Edward
Xem chi tiết
Quỳnh Anh
Xem chi tiết
Quỳnh Anh
Xem chi tiết
Julian Edward
Xem chi tiết
Nguyễn Công Thành
Xem chi tiết
Trùm Trường
Xem chi tiết