Cho h/s y = f(x) liên tục trên R ; f'(x) = 0 có đúng 2 no x=1 ; x=2 . H/s g(x) = \(f\left(x^2+4x-m\right)\) . Có bn g/t nguyên của m \(\in\left[-2021;2022\right]\) để p/t g'(x) = 0 có nhiều no nhất ?
Cho f(x+y)=f(x)+f(y)
Tìm tất cả các hàm số f: R --> R thoả mãn : (Với mọi x,y thuộc R)
\(f\left(x^3-y^3\right)=xf\left(x^2\right)-yf\left(y^2\right)\)
\(f\left(x^5+y^5+y\right)=x^3f\left(x^2\right)+y^3f\left(y^2\right)+f\left(y\right)\)
@Akai Haruma @Nguyễn Việt Lâm
Giúp em với ạ, em cảm ơn
Cho f(x+y)=f(x)+f(y)
Tìm tất cả các hàm số f: R --> R thoả mãn : (Với mọi x,y thuộc R)
\(f\left(x^3-y^3\right)=xf\left(x^2\right)-yf\left(y^2\right)\)
\(f\left(x^5-y^5+xy\right)=x^3f\left(x^2\right)-y^3f\left(y\right)+f\left(xy\right)\)
Em cảm ơn ạ !!!
Tìm tất cả các hàm số f: Z --> Z thoả mãn \(f\left(f\left(x\right)+yf\left(x^2\right)\right)=x+x^2f\left(y\right)\) với mọi x,y thuộc Z
Cho hai hàm số \(f\left(x\right),g\left(x\right)\) đều có đạo hàm trên R và thỏa mãn: \(f^3\left(2-x\right)-2f^2\left(2+3x\right)+x^2.g\left(x\right)+36x=0\forall x\in R\). Tính \(A=3f\left(2\right)+4f'\left(2\right)\)
A. A = -10
B. A = 10
C. A = 1
D. A = 9
Cho hàm số \(y=f\left(x\right)\) có đạo hàm liên tục trên R, thỏa mãn: \(2f\left(2x\right)+f\left(1-2x\right)=12x^2\). Phương trình tiếp tuyến của đồ thị hàm số tại điểm có hoành độ \(x=1\) là:
A. \(y=4x-2\)
B. \(y=2x+2\)
C. \(y=2x-6\)
D. \(y=4x-6\)
cho hàm số \(f\left(x\right)=2x^2+1\). đặt \(y=f\left(x\right)-f'\left(x\right)\). tìm x để \(y'\left(x\right)=0\)?
tìm a, b, c để hso \(f\left(x\right)=ax^2+bx+c\) có đạo hàm \(f'\left(x\right)\) thỏa mãn \(f\left(x\right)+\left(x-1\right)f'\left(x\right)=3x^2\) voi mọi x thuoc R
Cho hàm số \(y=f\left(x\right)=4\sqrt{2x-6}\)
a) Dùng định nghĩa tính \(f'\left(x\right),x\in\left(3;+\infty\right)\)
b) Viết PT tiếp tuyến tại x0=5
c) Giải bất phương trình \(f'\left(x\right)>4,x\in\left(3;+\infty\right)\)