\(f\left(x\right)=x^{99}-2017^{x^{98}}+2017^{x^{97}}-...+2017x-1\)
\(f\left(2016\right)=2016^{99}-2017.2016^{98}+2017.2016^{97}-...+2017.2016-1\)
\(f\left(2016\right)=2016^{99}-\left(2016+1\right).2016^{98}+\left(2016+1\right).2016^{97}-...+\left(2016+1\right).2016-1\)
\(f\left(2016\right)=2016^{99}-2016^{99}-2016^{98}+2016^{98}+2016^{97}-2016^{97}-2016^{96}+...+2016^2+2016-1\)
\(f\left(2016\right)=2016-1\)
\(f\left(2016\right)=2015\)