Xl m.n :))
Hôm nay t rãnh nên làm jup 1 đứa bạn cái bài nì .
Ai chưa biết thì tham khảo luôn nha luôn nha :))
Đề tìm số dư khi chia \(x^{2015}+x^{1945}+x^{1930}-x^2-x+1\) cho x2 - 1
Giải :
Đặt \(f\left(x\right)=x^{2015}+x^{1945}+x^{1930}-x^2-x+1\)
Gọi thương khi chia f(x) cho x2 - 1 là G(x) và số dư là ax + b (*)
Theo đề ra ta có :
\(f\left(x\right)=\left(x^2-1\right).G\left(x\right)+ax+b\)
Vì đẳng thức đùng ( \(\forall x\) ) . Ta đó suy ra :
+ \(f\left(1\right)=1^{2015}+1^{1945}+1^{1930}-1^2-1+1=\left(1^2-1\right).G\left(1\right)+ax+b\)
=> a + b = 2 (1)
+ \(f\left(-1\right)=\left(-1\right)^{2015}+\left(-1\right)^{1945}+\left(-1\right)^{1930}-\left(-1\right)^2-\left(-1\right)+\left(-1\right)=\left[\left(-1\right)^2-1\right].G\left(1-\right)+a.\left(-1\right)+b\)
=> b - a = 0 (2)
Cộng (1) và (2)
=> (a + b ) + ( b - a ) = 2+0
=> b = 1
=> a = 1 .
Thay vào (*) ta có :
Số dư là x + 1
Thân ~
~ S.b ~
Rút gọn:
A=\(\dfrac{\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2}{\left(x-y\right)\left(y-z\right)\left(z-x\right)}+2\left(\dfrac{1}{x-y}+\dfrac{1}{y-z}+\dfrac{1}{z-x}\right)\)
1) Tìm min của biểu thức:
\(P=\frac{2x}{x^2+1}\)
2) Cho\(\left\{\begin{matrix}ab+bc+ca=1\\a^2+b^2+c^2=1\end{matrix}\right.\)
Tính: \(M=a+b+c\)
Giải phương trình:
a)\(\dfrac{x-49}{50}\)+\(\dfrac{x-50}{49}=\dfrac{49}{x-50}+\dfrac{50}{x-49}\)
b)\(\dfrac{x+14}{86}+\dfrac{x+15}{85}+\dfrac{x+16}{84}+\dfrac{x+17}{83}+\dfrac{x+116}{4}=0\)
c)\(\dfrac{1}{\left(x^2+5\right)\left(x^2+4\right)}+\dfrac{1}{\left(x^2+4\right)\left(x^2+3\right)}+\dfrac{1}{\left(x^2+3\right)\left(x^2+2\right)}+\dfrac{1}{\left(x^2+2\right)\left(x^2+1\right)}=-1\)
Đề:
Cho các số x, y thoả mãn đẳng thức 5x2 + 5y2 + 8xy - 2x + 2y + 2 = 0. Tính giá trị của biểu thức M = (x + y)2015 + (x - 2)2016 + (y + 1)2017
Giải:
5x2 + 5y2 + 8xy - 2x + 2y + 2 = 0
x2 - 2x + 1 + y2 + 2y + 1 + 4x2 + 8xy + 4y2 = 0
(x - 1)2 + (y + 1)2 + 4(x2 + 2xy + y2) = 0
(x - 1)2 + (y + 1)2 + 4(x + y)2 = 0
mà \(\left(x-1\right)^2\ge0\)
\(\left(y+1\right)^2\ge0\)
\(4\left(x+y\right)^2\ge0\)
\(\Rightarrow\left(x-1\right)^2+\left(y+1\right)^2+4\left(x+y\right)^2=0\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}x-1=0\\y+1=0\\x+y=0\end{array}\right.\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}x=1\\y=-1\end{array}\right.\)
Thay x = 1 và y = - 1 vào M, ta có:
\(M=\left[1+\left(-1\right)\right]^{2015}+\left(1-2\right)^{2016}+\left(-1+1\right)^{2017}\)
\(=0^{2015}+\left(-1\right)^{2016}+0^{2017}\)
\(=1\)
Trịnh Trân Trân <3
Cho \(f\left(x\right)+11\left(\frac{1}{x}\right)=x^2\) với mọi x khác 0
Tính giá trị của f(2014)-f(2015)
Giải phương trình \(\left(x+1\right)^2\left(1+\dfrac{2}{x}\right)^2+\left(1+\dfrac{1}{x}\right)^2=8\left(1+\dfrac{2}{x}\right)^2\)
Mọi người ơi giúp em 3 bài này với... E làm mãi không được ..
Mọi người giúp em với. Em cảm ơn nhiều ạ.
1. Cho các số a,b,c,d thỏa mãn \(a^2+b^2+\left(a+b\right)^2=c^2+d^2+\left(c+d\right)^2\)
Chứng minh rằng :\(a^4+b^4+\left(a+b\right)^4=c^4+d^4+\left(c+d\right)^4\)
2. Cho các số a,b,c thỏa mãn \(a^2+b^2+c^2=a^3+b^3+c^3=1\)
Tính giá trị của biểu thức \(A=a^{2014}+b^{2015}+c^{2016}\)
3. Giải phương trình : \(\left(3x^2+x+2015\right)^2+4\left(x^2+1008\right)^2=4\left(x^2-1008\right)\left(3x^2+x+2015\right)\)
Giải phương trình:
\(\dfrac{\left(x-a\right)\cdot\left(x-c\right)}{\left(b-a\right)\cdot\left(b-c\right)}+\dfrac{\left(x-b\right)\cdot\left(x-c\right)}{\left(a-b\right)\cdot\left(a-c\right)}=1\)
a, b. c là hằng số và khác nhau đôi một