Ta có: \(F\left(x\right)=\dfrac{1}{x}=\int x^2f\left(x\right)dx\)
Hay \(F'\left(x\right)=-\dfrac{1}{x^2}=x^2f\left(x\right)\Rightarrow f\left(x\right)=\dfrac{-1}{x^4}\)
Có: \(f'\left(x\right)=\dfrac{4}{x^3}\) \(\Rightarrow I=\int f'\left(x\right)x^3lnxdx=\int\dfrac{4}{x^3}x^3lnxdx=4\int lnxdx\)
Đặt: \(\left\{{}\begin{matrix}u=lnx\\dv=dx\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}du=\dfrac{1}{x}dx\\v=x\end{matrix}\right.\)
\(\Rightarrow I=\text{4}(xlnx-\int x\dfrac{1}{x}dx)=4x\left(lnx-1\right)\)