Chương I : Số hữu tỉ. Số thực

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
bui xuan dieu

Cho \(\frac{a+b+c-d}{d}=\frac{b+c+d-a}{a}=\frac{c+d+a-b}{b}=\frac{d+a+b-d}{c}\)(với đk a+b+c+d khác 0) . Tính giá trị bthuc:

\(P=\left(1+\frac{b+c}{a}\right).\left(1+\frac{c+d}{b}\right).\left(1+\frac{d+a}{c}\right).\left(1+\frac{a+b}{d}\right)\)

Nguyễn Thành Trương
20 tháng 3 2020 lúc 21:46

$\dfrac{a+b+c-d}{d}=\dfrac{b+c+d-a}{a}=\dfrac{c+d+a-b}{b}=\dfrac{d+a+b-c}{c}$

Cộng 2 vào mỗi đẳng thức ta có:\(\begin{align} & 2+\dfrac{a+b+c-d}{d}=\dfrac{b+c+d-a}{a}+2=\dfrac{c+d+a-b}{b}+2=\dfrac{d+a+b-c}{c}+2 \\ & \Leftrightarrow \dfrac{a+b+c+d}{d}=\dfrac{a+b+c+d}{a}=\dfrac{a+b+c+d}{b}=\dfrac{a+b+c+d}{c}\Rightarrow a=b=c=d \\ \end{align}\)

Thay vào P ta được: $P=\left( 1+2 \right)\left( 1+2 \right)\left( 1+2 \right)\left( 1+2 \right)={{3}^{4}}=81$

Khách vãng lai đã xóa

Các câu hỏi tương tự
#𝒌𝒂𝒎𝒊ㅤ♪
Xem chi tiết
David Santas
Xem chi tiết
dinh hoang an
Xem chi tiết
Dominhcute
Xem chi tiết
Lê Thị Ngọc Sương
Xem chi tiết
huy hongnm
Xem chi tiết
Thị Phương Thảo Trần
Xem chi tiết
Nguyễn Anh Thư
Xem chi tiết
bui xuan dieu
Xem chi tiết