Cho \(\frac{a}{b}=\frac{c}{d}\) chứng minh:
1/ \(\frac{a^2+ac}{c^2-ac}=\frac{b^2+bd}{d^2-bd}\)
2/ \(\frac{3a^2+c^2}{3b^2+d^2}=\frac{\left(a+c\right)^2}{\left(b+d\right)^2}\)
Tìm x biết :
a) \(\left[\left(6\frac{3}{5}-3\frac{3}{14}\right).2,5\right]:\left(21-1,25\right)=x:5\frac{5}{6}\)
b) \(\left(4-\frac{3}{4}\right):\left(2\frac{1}{3}-1\frac{1}{9}\right)=31x:\left(45\frac{10}{63}-44\frac{25}{84}\right)\)
c) \(\frac{x-1}{x+5}=\frac{6}{7}\)
d) \(\frac{x^2}{6}=\frac{24}{25}\)
e) \(\frac{x-2}{x-1}=\frac{x+4}{x+7}\)
giúp mình nhé
1.Tính:
\(a,A=\sqrt{12\frac{1}{4}}.\left(\frac{-2}{7}\right)^2-\left[2,\left(4\right).2\frac{5}{11}\right]:\left(\frac{-42}{5}\right)\)
\(B=\frac{1}{3}+\frac{2}{3^2}+\frac{3}{3^3}+\frac{4}{3^4}+...+\frac{2016}{3^{2016}}\)
2. Tìm x,y,z biết:
a) \(\left|x+1\right|+\left|x+2\right|+\left|x+4\right|+\left|x+5\right|-6x=0\)
b) \(\sqrt{\left(x+\sqrt{5}\right)^2}+\sqrt{\left(y+\sqrt{3}\right)^2}+\left|x-y-z\right|=0\)
c) \(\frac{x-2}{2}=\frac{y-3}{3}=\frac{z-3}{4}\) và x-2y+3z=14.
d) \(5^x+5^{x+1}+5^{x+2}=3875\).
3. a) Cho bốn số a,b,c,d>0 thỏa mãn: \(\frac{1}{c}=\frac{ }{1}2.\left(\frac{1}{b}+\frac{1}{a}\right)\)và b là trung bình cộng của a và c. Chứng minh rằng bốn số đó lập nên một tỉ lệ thức.
b) Cho tỉ lệ thức: \(\frac{2a+13b}{3a-7b}=\frac{2c+13d}{3c-7d}\) (với a,b,c,d khác 0)
Chứng minh rằng: \(\frac{a}{b}=\frac{c}{d}\)
Tính \(E=\left[\frac{1\frac{11}{31}.4\frac{3}{7}-\left(15-6\frac{1}{3}.\frac{2}{19}\right)}{4\frac{5}{6}+\frac{1}{6}\left(12-5\frac{1}{3}\right)}.\left(-1\frac{14}{93}\right)\right].\frac{31}{50}\)
Cho tỉ lệ thức : \(\frac{a}{b}=\frac{c}{d}\) . Chứng minh rằng : \(\left(\frac{a+b}{c+d}\right)^3=\frac{a^3+b^3}{c^3+d^3}\)
tính\(\left[\frac{\left(4,6+5.6,25\right).14}{4.0,125+2,3}:\frac{17}{6}\right]:\frac{27.9\frac{3}{5}}{12,4+4\frac{2}{5}}+\left(4\frac{5}{8}-\frac{13}{6}:8\frac{2}{3}\right):\left(3,25:2\frac{1}{4}\right)\)
Rút gọn
C = \(\frac{\left(\frac{2}{5}\right)^7.5^7+\left(\frac{9}{4}\right)^3:\left(\frac{3}{16}\right)^3}{2^7.5^2+512}\)
D = \(\frac{2^{12}.3^5-4^6.9^2}{\left(2^2.3\right)^6+8^4.3^5}\)
E = \(\frac{5^{10}.7^3-25^5.49^2}{\left(125.7\right)^3+5^9.14^3}\)
Cho \(\frac{a}{b}=\frac{c}{d}\) chứng minh \(\frac{ab}{cd}=\frac{\left(a+b\right)^2}{\left(c+d\right)^2}\)
Rút gọn rồi tính gt biểu thức :
a ) \(\frac{ax^2\left(a-x\right)-a^2x\left(x-a\right)}{3a^2-3x^2}\) với \(a=\frac{1}{2};x=-3\)
b ) \(\frac{\left(ab+bc+ca+da\right)abcd}{\left(c+d\right)\left(a+b\right)+\left(b-c\right)\left(a-d\right)}\) với \(a=-3;b=-4;c=2;d=3\).