theo bài ra ta có:
\(\frac{1}{c}=\frac{1}{2}\left(\frac{1}{a}+\frac{1}{b}\right)\\ \Rightarrow\frac{1}{c}=\frac{1}{2}\left(\frac{b}{ab}+\frac{a}{ab}\right)\)
=> \(\frac{1}{c}=\frac{1}{2}.\frac{b+a}{ab}\\ \Leftrightarrow\frac{1}{c}=\frac{a+b}{2ab}\)
=> 2ab = c( a+b )
=> ab + ab = ca + cb
<=> ca+cb = ab+ab
=> ca - ab = ab - cb
=> a( c - b ) = b( a - c )
=> \(\frac{a}{b}=\frac{a-c}{c-b}\left(đpcm\right)\)