Ta có: \(f\left(x\right)=ax^2+bx+c\)
\(f\left(1\right)=a\cdot1^2+b\cdot1+c=4\Rightarrow a+b+c=4\)
\(f\left(-1\right)=a\left(-1\right)^2+b\left(-1\right)+c=8\Rightarrow a-b+c=8\)
Và \(a-c=4\) suy ra ta có \(\left\{{}\begin{matrix}a+b+c=4\\a-b+c=8\\a-c=4\end{matrix}\right.\)
Dễ dàng suy ra \(\left\{{}\begin{matrix}a=5\\b=-2\\c=1\end{matrix}\right.\)
Vậy hệ số \(a;b;c=5;-2;1\)