Ở chỗ dấu \(\Rightarrow\) cuối cùng ; \(\lim\limits_{x\rightarrow+\infty}\dfrac{n^3}{n^2}=+\infty\)
Ta có: \(lim_{\rightarrow+\infty}=\dfrac{n^3}{n^2}\)
\(lim_{\rightarrow+\infty}=\dfrac{n^2n}{n^2}\)
\(lim_{\rightarrow+\infty}=n=+\infty\)
Ở chỗ dấu \(\Rightarrow\) cuối cùng ; \(\lim\limits_{x\rightarrow+\infty}\dfrac{n^3}{n^2}=+\infty\)
Ta có: \(lim_{\rightarrow+\infty}=\dfrac{n^3}{n^2}\)
\(lim_{\rightarrow+\infty}=\dfrac{n^2n}{n^2}\)
\(lim_{\rightarrow+\infty}=n=+\infty\)
Tính các giới hạn
a) \(\lim\limits_{x\rightarrow-\infty}\dfrac{x+3}{3x-1}\)
b) \(\lim\limits_{x\rightarrow+\infty}\dfrac{\left(\sqrt{x^2+1}+x\right)^n-\left(\sqrt{x^2+1}-x\right)^n}{x}\)
Tính giới hạn
a) \(\lim\limits_{x\rightarrow-\infty}\dfrac{x+3}{3x-1}=\dfrac{1}{3}\)
b) \(\lim\limits_{x\rightarrow-\infty}\dfrac{\sqrt{x^2-2x+4}-x}{3x-1}\)
Tìm giới hạn:
a, \(\lim\limits_{x\rightarrow+\infty}\dfrac{x-2}{3-\sqrt{x^2+7}}\)
b, \(\lim\limits_{x\rightarrow-\infty}\dfrac{\sqrt{x^2-x}-\sqrt{4x^2+1}}{2x+3}\)
Tính các giới hạn
a) \(\lim\limits_{x\rightarrow\infty}\dfrac{a_0x^m+a_1x^{m-1}+a_2x^{m-2}+...+a_m}{b_0x^n+b_1x^{n-1}+b_2x^{n-2}+...+b_n}\)
b) \(\lim\limits_{x\rightarrow+\infty}\dfrac{\left(x-\sqrt{x^2-1}\right)^n+\left(x+\sqrt{x^2-1}\right)^n}{x^n}\)
Tính các giới hạn
a) \(\lim\limits_{x\rightarrow+\infty}\dfrac{\sqrt[3]{x^3+2x^2-4x+1}}{\sqrt{2x^2+x-8}}\)
b) \(\lim\limits_{x\rightarrow-\infty}\dfrac{\sqrt{x^2-2x+4}-x}{3x-1}\)
Tính các giới hạn
a) \(\lim\limits_{x\rightarrow+\infty}\dfrac{x+\sqrt{x^2+x-10}}{2x+3}\)
b) \(\lim\limits_{x\rightarrow+\infty}\dfrac{3x^2+\sqrt{x^2+x-10}}{\sqrt{x^3+x^2-3x-x^2+3}}\)
Tính các giới hạn sau:
a) \(\lim\limits_{x\rightarrow0^-}\dfrac{2\left|x\right|+x}{x^2-x}\)
b) \(\lim\limits_{x\rightarrow-\infty}\left(\sqrt{x^2-x}-\sqrt{x^2-1}\right)\)
c) \(\lim\limits_{x\rightarrow-\infty}\dfrac{\sqrt[3]{1+x^4+x^6}}{\sqrt{1+x^3+x^4}}\)
Tìm giới hạn:
a, \(\lim\limits_{x\rightarrow+\infty}\dfrac{\sqrt{x^2+x+2}}{x-1}\)
b, \(\lim\limits_{x\rightarrow-\infty}\left(\sqrt{4x^2-x}+2x\right)\)
Tìm giới hạn:
a, \(\lim\limits_{x\rightarrow+\infty}x\left(\sqrt{x^2+2}-x\right)\)
b, \(\lim\limits_{x\rightarrow-\infty}\dfrac{3x^2-4x+6}{x-2}\)
Tính giới hạn
a) \(\lim\limits_{x\rightarrow4^-}\dfrac{2x-5}{x-4}=-\infty\)
b) \(\lim\limits_{x\rightarrow+\infty}\left(-x^3+x^2-2x+1\right)\)