\(H=\int\limits^3_2\frac{1}{x^2\left(x+1\right)}dx\)
Sử dụng hệ số bất định để tách biểu thức tích phân:
\(\frac{1}{x^2\left(x+1\right)}=\frac{A}{x}+\frac{B}{x^2}+\frac{C}{x+1}=\frac{Ax\left(x+1\right)+B\left(x+1\right)+Cx^2}{x^2\left(x+1\right)}=\frac{\left(A+C\right)x^2+\left(A+B\right)x+B}{x^2\left(x+1\right)}\)
Đồng nhất 2 vế ta được: \(\left\{{}\begin{matrix}A+C=0\\A+B=0\\B=1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}A=-1\\B=C=1\end{matrix}\right.\)
\(\Rightarrow H=\int\limits^3_2\left(-\frac{1}{x}+\frac{1}{x^2}+\frac{1}{x+1}\right)dx=\left(-lnx-\frac{1}{x}+ln\left(x+1\right)\right)|^3_2=3ln2-2ln3+\frac{1}{6}\)