a: Xét tứ giác OBAC có góc OBA+góc OCA=180 độ
nên OBAC là tứ giác nội tiếp
b: Xét (O) có
AB,AC là tiếp tuyến
nên AB=AC
mà OB=OC
nên OA là trung trực của BC
=>OA vuông góc với BC
c: OI*OA=OB^2=OB*OC
a: Xét tứ giác OBAC có góc OBA+góc OCA=180 độ
nên OBAC là tứ giác nội tiếp
b: Xét (O) có
AB,AC là tiếp tuyến
nên AB=AC
mà OB=OC
nên OA là trung trực của BC
=>OA vuông góc với BC
c: OI*OA=OB^2=OB*OC
Từ điểm A nằm ngoài đường tròn tâm O vẽ hai tiếp tuyến AB, AC. Kẻ BK vuông góc với AC, BK cắt đường tròn tâm O tại M, AM cắt O tại N. Gọi H là giao điểm giữa OA và BC.
a) Chứng minh bốn điểm O, H, M, N thuộc cùng một đường tròn
b) Kẻ MI vuông góc với BC, MD vuông góc với AB. CHứng minh Tam giác MIK đồng dạng với tam giác MDI
c) Gọi E, F, G lần lượt là giao điểm BM và ID; IK và MC; EF và AB. CHứng minh BG = IF
Cho đường tròn tâm O và điểm A nằm ngoài đường tròn. Từ A vẽ hai tiếp tuyến AB và AC đến đường tròn (O),( B,C là tiếp điểm)
a) Chứng minh 4 điểm A,B,C,O cùng thuộc 1 đường tròn
b) Vẽ đường kính BD của đường tròn (O). Chứng minh OA song song với DC
c) AD cắt đường tròn (O) tại E. Gọi I là trung điểm của DE. Tia OI cắt BC tại K. Chứng minh KD là tiếp tuyến của đường tròn (O)
Cho đường tròn (O;R) và điểm A nằm ngoài đường tròn. Qua A kẻ 2 tiếp tuyến AB, AC với đường tròn (B,C là các tiếp điểm)
a) Chứng minh: 4 điểm A,B,O,C cùng thuộc một đường tròn
b) Kẻ cát tuyến ADE nằm giữa AO và AB (D nằm giữa A và E), kẻ các tiếp tuyến tại D và E cắt nhau tại S. Nối BC cắt OA tại H. Chứng minh: R^2=OH.OA và 3 điểm S, B,C thẳng hàng
Cho đường tròn (O) bán kính R. Từ điểm A nằm bên ngoài đường tròn vẽ hai tiếp tuyến AC, AB (B, C là các tiếp điểm). Kẻ cát tuyến AMN tới đường tròn, gọi D là trung điểm của dây MN
a) Chứng minh rằng 5 điểm A, O, B, C, D cùng nằm trên một đường tròn
b) Cho AC=OC. Hãy chứng minh tứ giác ACOB là hình vuông và tính diện tích đường tròn ngoại tiếp tứ giác ACOB theo R.
c) Kẻ ME ⊥ AB (E ∈ AB), MF ⊥ AC (F ∈ AC), MK ⊥ BC (K ∈ BC). Chứng minh góc KME bằng góc KMF
d) Gọi H là giao điểm của MB và KE, I là giao điểm của MC và KF. Chứng minh MK² = ME . MF
e) Chứng minh tứ giác MHKI nội tiếp và HI // BC.
Ai đó có thể giúp mình phần d và e không, chứ mình thì chịu với nó rồi. Ngày mai mình phải nộp rồi, các bạn giúp mình với.
Cho đường tròn (O;R) và 1 điểm A ở ngoài đường tròn. Kẻ các tiếp tuyến AB,AC với đường tròn (B,C là các tiếp điểm). Gọi H là trung điểm BC
a)Chứng minh A,H,O thẳng hàng và các điểm A,B,O,C cùng nằm trên 1 đường tròn
b)Kẻ đường kính BD của đường tròn (O), vẽ CK vuông góc BD. Chứng minh AC.CD=CK.AO
c)Tia AO cắt đường tròn (O) theo thứ tự tại M,N. Chứng minh: MH.AN=AM.HN
d)AD cắt CK tại I. Chứng minh rằng I là trung điểm của CK
Cho đường tròn (O;R) và điểm A ở ngoài đường tròn, Kẻ các tiếp tuyến AB,AC với đường tròn (B,C là các tiếp điểm) gọi H là trung điểm của BC
a)Chứng minh: A,H,O thẳng hàng và các điểm A,B,O,C cùng nằm trên 1 đường tròn
b)Kẻ đường kính BD của đường tròn (O). Vẽ CK vuông góc BD. Chứng minh: AC.CD=CK.AC
c)Tia AO cắt (O) tại M,N. Chứng minh: MH.AN=AM.HN
d)AO cắt CK tại I. Chứng minh: I là trung điểm của CK
Cho đường tròn tâm O và điểm A nằm ngoài đường tròn đó.Vẽ tiếp tuyến AB với đường tròn (B là tiếp điểm).Kẻ BH vuông góc với AO (H ϵ AO),trên tia đối của tia HB lấy điểm C sao cho HC = HB.
a.Chứng minh rằng C thuộc đường tròn tâm O và AC là tiếp điểm của đường tròn tâm O.
b.Vẽ cát tuyến AMN với đường tròn tâm O (AM < AN , tia AM nằm giữa hai tia AO và AC).Chứng minh rằng AM.AN = AB2
Cho đường tròn tâm O và điểm A nằm ngoài đường tròn đó.Vẽ tiếp tuyến AB với đường tròn (B là tiếp điểm).Kẻ BH vuông góc với AO (H ϵ AO),trên tia đối của tia HB lấy điểm C sao cho HC = HB.
a.Chứng minh rằng C thuộc đường tròn tâm O và AC là tiếp điểm của đường tròn tâm O.
b.Vẽ cát tuyến AMN với đường tròn tâm O (AM < AN , tia AM nằm giữa hai tia AO và AC).Chứng minh rằng AM.AN = AB2
Cho đường tròn tâm O và điểm A nằm ngoài đường tròn đó.Vẽ tiếp tuyến AB với đường tròn (B là tiếp điểm).Kẻ BH vuông góc với AO (H ϵ AO),trên tia đối của tia HB lấy điểm C sao cho HC = HB.
a.Chứng minh rằng C thuộc đường tròn tâm O và AC là tiếp điểm của đường tròn tâm O.
b.Vẽ cát tuyến AMN với đường tròn tâm O (AM < AN , tia AM nằm giữa hai tia AO và AC).Chứng minh rằng AM.AN = AB2