a: Xét tứ giác OAMB có
góc OAM+góc OBM=180 độ
nên OAMB là tứ giác nội tiêp
b: Xét (O) có
MA,MB là tiếp tuyến
nên MA=MB
mà OA=OB
nên OM là trung trực của AB
=>OM vuông góc với AB
a: Xét tứ giác OAMB có
góc OAM+góc OBM=180 độ
nên OAMB là tứ giác nội tiêp
b: Xét (O) có
MA,MB là tiếp tuyến
nên MA=MB
mà OA=OB
nên OM là trung trực của AB
=>OM vuông góc với AB
cho đường tròn tâm (o) từ điểm M nằm ngoài đường tròn kẻ hai tiếp tuyến MA,MB với đườn tròn (o)(A và B là hai tiếp tuyến).Gọi I là giao điểm của OM và AB; từ B kẻ đườn kính BC của đường tròn(o),đường thẳng MC cắt đường tròn (o) tai D (D khác C)
a)Chứng minh:4 điểm M,A,O,B cùng thuộc một đường tròn
b)Chứng minh:OM vuông với AB và MD.MC=MI.MO
c)Qua O vẽ đường thẳng vuông góc với MC tại E và cắt đường thẳng BA tại F. Chứng minh: FC là tiếp tuyến của đường tròn (O)
Cho đường tròn tâm O, bán kính R và M là một điểm nằm bên ngoài đường tròn. Từ M kẻ hai tiếp tuyến MA, MB với đường tròn (O) (A, B là các tiếp điểm). Gọi E là giao điểm của AB và OM.
a) Chứng minh tứ giác MAOB nội tiếp được trong một đường tròn.
b) Tính độ dài đoạn thẳng AB và ME biết OM = 5cm và R = 3cm.
c) Kẻ tia Mx nằm trong góc AMO cắt đường tròn tại 2 điểm phân biệt C và D (C nằm giữa M và D). Chứng minh rằng góc MEC = góc OED
cho điểm m nằm ngoài đường tròn (O;R).Kẻ các tiếp tuyến MA,MB với đường tròn (O) (A,B là các tiếp điểm ).Vẽ đường kính AD của đường tròn(O).Gọi H là giao điểm của MO và AB.
a/Chứng minh rằng :MO vuông góc AB tại H
b/Cho biết R = 15 cm và MO = 25 cm .Tính độ dài đoạn OH.
c/ Gọi G là giao điểm của BD và AM .Chứng minh :AM = MG.
d/ Gọi I là giao điểm của tia OM và đường tròn (O). Chứng minh I là tâm đường tròn nội tiếp tam giác MAB . Tính độ dài đoạn thẳng BD theo R ,r với r là bán kính của đường tròn nội tiếp tam giác MAB.
Cho (O), đg kính kính AB. Qua điểm M nằm trên đường tròn kẻ tiếp tuyến tại A và B của (o) lần lượt cắt tiếp tuyến tai I và K A) CMR: IK=AI+BK và Góc IOK =90° B)Hạ MH vuông góc với AB tại H, MH cắt BI tại C CMR: C là trung điểm của MH
Em cần gấp
cho đường tròn tâm O bán kính R và điểm S nằm ngoài đờng tròn. từ S kẻ các tiếp tuyến SA, SB( A, B là các tiếp điểm ) kẻ đường kính AC của đường tròn (O). tiếp tuyến tại C cắt AB tại E.
Cm: OE vuống góc với SC
Cho nửa đường tròn tâm (O;R) có đường kính AB. Vẽ các tiếp tuyến Ax, By của đường (O) (Ax, By và nửa đường trong cùng thược nửa mặt phẳng AB). Qua điểm M bất kì nằm trên nửa đường tròn, kẻ tiếp tuyến thứ ba cắt Ax, By lần lượt tại D, E.
a) CMR: △DOE làm tam giác vuông.
b) Tính bán kính đường tròn (O) biết AD = 9cm, BE = 4cm.
c) Xác định vị trí điểm M trên nửa đường tròn (O) sao cho diện tích tứ giác ADEB là nhỏ nhất.
cho điểm A nằm ngoài đường tròn tâm O bán kình R từ A kẻ hai tiếp tuyến AB, Ac với đường tròn tâm o ( b, C là tiếp điểm)
a) giả sử R=15 và OA = 25 hãy tính AB
b) c/m oa vuông góc với bc tại K
c) kẻ đường kính CD của đường tròn tâm o gọi P là giao điểm của AC và DB. C/M Ap=AC
d) kẻ BH vuông góc với cd tại H gọi I là giao điểm của BN và AD. C/m Sabd=2Sabd là diện tích tam giác BCD; Scdb là diện tích tam giác CID
Cho dg tròn tâm O ĐIỂM M năng ngoài đường tròn kẻ tiếp tuyến MA MB với đường tròn a CM i là Trung điểm AB ( với i là giao điểm của MO và AB) b CM OI = 1 phần 2 AD tính OI khi AD = 6cm với BD là đường kính đường tròn tâm O
Cho đường trong (O;R). Từ 1 điểm M nằm ngoài đường tròn vẽ 2 tiếp tuyến MA và MB (A:B là 2 tiếp điểm). Vẽ cát tuyến MCD với đường tròn (C nằm giữa M và D), gọi I là trung điểm của CD. Chứng minh A,B cùng nằm trên đường tròn đường kính OM