Cho đường tròn tâm O đường kính AB. Trên đường tròn lấy điểm C sao cho AC < BC ( C ≠ A). Các tiếp tuyến tại B và C của (O) cắt nhau ở điểm D,AD cắt (O) tại E ( E ≠ A)
a) Chứng minh góc BCE = góc DBE
b) Chứng minh bốn điểm O,B,D,C cùng thuộc một đường tròn
c) Qua C kẻ đường thẳng song song với BD cắt AB tại H. Gọi I là giao điểm của AD và CH. Chứng minh I là trung điểm của CH
Lời giải:
a) Xét đường tròn $(O)$ ta thấy:
\(\widehat{BCE}=\widehat{BAE}\) (góc nội tiếp cùng chắn cung $BE$)
\(\widehat{BAE}=\widehat{DBE}\) (góc nội tiếp chắn một cung thì bằng góc tạo bởi tiếp tuyến và dây cung đó)
\(\Rightarrow \widehat{BCE}=\widehat{DBE}\) (đpcm)
b) Vì $DB,DC$ là tiếp tuyến của $(O)$ nên:
\(DC\perp OC; DB\perp OB\Rightarrow \widehat{DCO}=\widehat{DBO}=90^0\)
Xét tứ giác $DCOB$ có tổng 2 góc đối \(\widehat{DCO}+\widehat{DBO}=90^0+90^0=180^0\) nên $DCOB$ là tứ giác nội tiếp, hay $O,B,D,C$ cùng thuộc một đường tròn.
c) Câu c bạn tham khảo tại Câu hỏi của Yến Tử - Toán lớp 9 | Học trực tuyến (phần c)