Xét (O) có
ΔEKF nội tiếp
EF là đườngkính
Do đó: ΔEKF vuông tại K
Xét tứ giác QOFK có góc QOF+góc QKF=180 độ
nên QOFK là tứ giác nội tiếp
Xét (O) có
ΔEKF nội tiếp
EF là đườngkính
Do đó: ΔEKF vuông tại K
Xét tứ giác QOFK có góc QOF+góc QKF=180 độ
nên QOFK là tứ giác nội tiếp
Cho (O;R) có đường kính AB vuông góc với dây cung MN tại H(Hnằm giữa O và B) trên tia MN lấy điểm C nằm ngoài đường tròn(O;R) sao cho đoạn thẳng AC cắt đường tròn (O;R) tại điểm K khác A,2 dây MN và BK cắt nhau ở E
a) Chứng minh AHEK là tứ giác nội tiếp
Cho đường tròn O,R) , đường kính ab vuông góc với dây cung MN tại điểm H (H nằm giữa O và B ).Trên tia đối của tia NM lấy điểm C sao cho đoạn AC cắt (O) tại K khác A.Hai dây MN và BK cắt nhau ở E
a) Chứng minh tứ giác AHEK nội tiết
b) Qua N kẻ đường thẳng vuông góc với AC cắt tia AC cắt tia MK tại F.Chứng minh tam giác NFK cân và EM*NC=EN*CM
Cho đường tròn (O;R), đường kính AB vuông góc với dây cung MN tại H (H nằm giữa O và B). Trên tia đối NM lấy điểm C nằm ngoài đường tròn (O;R) sao cho đoạn thẳng AC cắt đương tròn tại k khác A. Hai day MN và BK cắt nhau ở E. Qua N kẻ đường thẳng vuông góc với AC cắt tia MK tại F.
a) Chứng minh tứ giác AHEK nội tiếp.
b) Chứng minh tam giác NFK cân và EM. NC = EN. CM.
c) Giả sử KE = KC. Chứng minh OK// MN và KM2 + KN2 = 4R2
Cho đường tròn (O;R), dây MN khác đường kính. Hai tiếp tuyến của đường tròn (O;R) tại M và N cắt nhau tại K. Kẻ đường kính NI, kẻ MH vuông góc với NI tại H. a) chứng minh OK vuông góc với ON b) chứng minh ON là phân giác góc HMK c) gọi Q là giao điểm của KI và MH. Chứng minh QH = QM
Cho đường tròng tâm O có hai đường kính AB và CD vuông góc với nhau. Gọi I là trung điểm của OA. Qua I vẽ dây MQ vuông góc với OA ( M thuộc cung Ac; Q thuộc cung AD; Q thuộc cung À). Đường thẳng vuông góc với MQ tại M cắt đường tròn tại P A/ chứng minh: a) ứ giác PMIO là hình thang vuông, b) ba điểm P, Q và O thẳng hàng B/ cho AC=a căn 2. Tính bán kính của đường tròn đã cho và khoảng cách từ O đến đường thẳng AC theo a
Cho đường tròn (O) đường kính BC. Trên tiếp tuyến tại B của đường tròn (O) lấy điểm S. Vẽ dây cung BA vuông góc với SO tại H.
1) Chứng minh: HA = HB, SA = SB.
2) Chứng minh SA là tiếp tuyến của đường tròn (O).
3) Nối SC cắt (O) tại D. Chứng minh: BD.SC = AB.SO.
4) Gọi T là điểm đối xứng của H qua A. Chứng minh: ST vuông góc CT.
Cho đường tròn (O), một đường kính AB cố định, một điểm I nằm giữa A và O sao cho AI = 1/2.AO (AI = AO/2). Kẻ dây MN vuông góc với AB tại I. Gọi C là điểm tùy ý thuộc cung lớn MN, sao cho C không trùng với M,N và B. Nối AC cắt MN tại E. a) Chứng minh tứ giác IECB nội tiếp được trong đường tròn. b) Chứng minh AM^2 = AE.AC c) Hãy xác định ví trí điểm C sao cho khoảng cách từ N đến tâm đường tròn ngoại tiếp tam giác CME là nhỏ nhất.
Cho đường tròn tâm O đường kính BC. Từ điểm H trên đoạn OB (H khác O và B) vẽ dây cung AD vuông góc với OB.
a) Chứng minh tam giác ABC vuông và AD^2 = 4HB.HC
b) Các tiếp tuyến của (O) tại A và D cắt nhau tại M. Chứng minh 3 điểm M, B, O thẳng hàng và 4 điểm M, A, O, D cùng thuộc một đường tròn
c) Chứng minh B là tâm đường tròn nội tiếp tam giác MAD và BM.CH = CM.BH
d) Gọi I là chân đường vuông góc hạ từ A xuống đường kính DE, ME cắt tại AI tại K. Chứng minh KA = KI
Cho nửa đường tròn tâm O bán kính R đường kính AB, H là trung điểm của OA. Qua H vẽ đường thẳng vuông góc với OA cắt nửa đường tròn tâm O tại C. Gọi E và F là hình chiếu vuông góc của H trên AC và BC. d) Đường thẳng EF cắt nửa đường tròn tâm O tại M,N. Chứng minh rằng CM = CN
Cho tam giác MAB vuông tại M ( MB<MA), kẻ MH vuông góc với AB( H thuộc AB). Đường tròn tâm O đường kính MH cắt MA và MB lần lượt tại E và F( E,F khác M). a) Chứng minh tứ giác AEFB nội tiếp b) Đường thẳng EF cắt đường tròn tâm (I) ngoại tiếp tam giác MAB tại P và Q(P thuộc cung MB). Chứng minh tam giác MPQ cân c) Gọi D là giao điểm thứ 2 của (O) với (I). Đường thẳng EF cắt đường thẳng AB tại K. Chứng minh ba điểm M,D,K thẳng hàng