Cho tam giác ABC vuông tại A nội tiếp đường tròn (O, R) có BC là đường kính và AC=R. Kẻ dây AD vuông góc với BC tại H.
1) Tính độ dài các cạnh AB, AH theo R;
2) Chứng minh rằng HA.HD=HB.HC;
3) Gọi M là giao điểm của AC và BD. Qua M kẻ đường thẳng vuông góc với BC cắt BC ở I, cắt AB ở N. Chứng minh ba điểm N, C, D thẳng hàng;
4) Chứng minh AI là tiếp tuyến của đường tròn (O, R).
ii. IO vuông góc với AC và BD
d) Chứng minh rằng: IA = IC; IB = ID; BC = AD. Tính T = \(IA^2+IB^2+IC^2+ID^2\)
Cho đường tròn (O;R) đường kính AB. Gọi I là dây cung của OA. Vẽ dây CD vuông góc với OA tại I. Lấy điểm E tùy ý trên cung nhỏ BC (E khác B và C). Gọi K là giao điểm của AE và BC. Kẻ KH vuông góc AB (H thuộc AB)
1) Chứng minh rằng BEHK là tứ giác nội tiếp.
2) Chứng minh rằng HK là tia phân giác của EHC và ba điểm E, H, D thẳng hàng.
3) Tìm vị trí của điểm E trên cung nhỏ BC sao cho chu vi ACEB lớn nhất.
Cho đường tròn (O;3cm). Vẽ đường kính AB, lấy điểm M trên AB sao cho AM = 2cm. Qua M vẽ dây CD vuông góc với AB.
a) Tính độ dài đoạn AC
b) Gọi E là điểm đối xứng với A qua điểm M. Tứ giác ACED là hình gì? Vì sao?
c) Vẽ đường tròn tâm O' đường kính EB cắt BC tại K. Tính EK và chứng minh ba điểm D, E, K thẳng hàng
d) Chứng minh MK là tiếp tuyến của đường tròn O'
Cho đường tròn (O), đường kính AB,dây AC không đi qua tâm O(AC<BC).Gọi H là trung điểm của AC.a)Tính góc ACB,chứng minh OH\\BC. b) Tiếp tuyến tại C của đường tròn O cắt tia OH tại M.Chứng mình MA là tiếp tuyến tại A của đường tròn O. c) Cho AB=10cm,BC=8cm.Tính chủ vi tam giác AMC. d) Kẻ CK vuông góc với AB tại K.Đoạn thẳng MB cắt đoạn thẳng CK tại I.Chứng mình I là trung điểm của CK
Cho (O;3); M nằm ngoài đường tròn. Kẻ trung tuyến MA; MB. Biết MO=5.
a/ Tính AB.
b/ Chúng minh rằng: OM⊥AB.
c/ Kẻ đường kính BD; Chứng minh rằng: AD // MB.
d/ Gọi H là giao điểm AB và BM; I là trung điểm MH. Gọi K là giao điểm DH và đường tròn O; Chứng minh rằng: B,I,D thẳng hàng.
từ một điểm m ở ngoài đường tròn tâm O có bán kính r vẽ hai tiếp tuyến MA và MB (A'B là tiếp điểm) Gọi H là giao điểm OM và AB .
đường thẳng MO cắt tâm O tại I và c i nằm giữa m và O chứng minh Ai là tia phân giác của góc
Cho đường tròn (O) đường kính AB,E thuộc đoạn AO ( E khác A,O và AE > EO ) , Gọi H là trung điểm của AE , kẻ dây CD vuông góc với AE tại H.
a) Tính góc ACB ?
b) Tứ giác ACED là hình gì ?
c) Gọi I là giao điểm của DE và BC . Chứng minh HI là tiếp tuyến của đường tròn đường kính EB ?
Cho đường tròn tâm O, bán kính R = 6cm và điểm A cách O một khoảng 10cm. Từ A vẽ tiếp tuyến AB (B là tiếp điểm) và cát tuyến bất kì ACD (C nằm giữa A và D). Gọi I Là trung điểm của CD.
a) Tính độ dài AB, số đo góc OAB (làm tròn đến độ).
b) Chứng minh bốn điểm A,B,O,I cùng thuộc một đường tròn
c) Chứng minh: \(AC.AD=AI^2-IC^2\)
Từ đó suy ra tích AC.AD không đổi khi C thay đổi trên đường tròn (O).