giúp em câu c thôi ạ plss
Cho (O;R), dây BC cố định. Điểm A di động trên cung lớn BC (AB < AC) sao cho tam giác ABC nhọn. Các đường cao BE, CF cắt nhau tại H. Gọi K là giao điểm của EF với BC. C/m:
a, Tứ giác BCEF nội tiếp
b, KB.KC = KE. KF
Câu 3. (1,0 điểm) Cho tam giác ABC ( A = 60° ,AC<AB) nội tiếp đường tròn (O; R) Hai đường cao BH và CK cắt nhau tại I.
a/ Chứng minh tứ giác AHIK là tứ giác nội tiếp
b/Tính diện tích hình quạt giới hạn bởi hai bán kính OB, OC và cung nhỏ BC theo R
Cho đường tròn (O;R) và dây BC cố định (BC không qua tâm), điểm A trên cung lớn BC, vẽ 2 đường cao BE cà CF cắt nhau tại H, kéo dài BE và CF cắt đường tròn lần lượt tại M và N.
a)Chứng minh tứ giác BCEF nội tiếp.
b)Chứng minh EF//MN.
c)Kẻ đường kính AK của đường tròn (O), gọi I là giao điểm của BC và HK. CHứng minh OI vuông góc với BC.
d)Chứng minh rằng khi A di động trên cung lớn BC thì đươgnf tròn ngoại tiếp tam giác AEF có bán kính không đổi.
cho tam giác ABC nhọn nội tiếp đường tròn (O;R) , 2 đường cao BE và CF của tam giác ABC cắt nhau tại H . đường thẳng AH cắt BD tại D và cắt (O;R) tại điểm M
a, chứng minh BC là p/g góc EMB
b, gọi I là tâm đường tròn ngoại tiếp tứ giác AEHF . chứng minh IE là tiếp tuyến của đường tròn ngoại tiếp tam giác BCE
c, khi 2 điểm B,C cố định và điểm A di động trên (O;R) nhứng vẫn thỏa mãn tam giác ABC nhọn . chứng minh OA vuông góc với EF . xác định vị trí A để tổng DE+EF+FD đtặ giá trị nhỏ nhất
Cho tam giác ABC có 3 góc nhọn nội tiếp (O;R);(AB>AC).Gọi M là điểm chính giữa cung BC; OM cắt BC tại D; AM cắt BC tại K a)chứng minh AM là tia phân giác của BAC b)Tiếp tuyến tại A của đường tròn tâm O cắt BC tại S.Chứng minh SA²=SB.SC c)chứng minh SA=SK và S;A;O;D cùng thuộc 1 đường tròn d)Trên đường tròn tâm O đặt E sao cho SB.SC=SE² chứng minh điểm E nằm trên đường tròn (SAOD)
Cho tam giác ABC có 3 góc nhọn nội tiếp (O;R);(AB>AC).Gọi M là điểm chính giữa cung BC; OM cắt BC tại D; AM cắt BC tại K a)chứng minh AM là tia phân giác của BAC b)Tiếp tuyến tại A của đường tròn tâm O cắt BC tại S.Chứng minh SA²=SB.SC c)chứng minh SA=SK và S;A;O;D cùng thuộc 1 đường tròn d)Trên đường tròn tâm O đặt E sao cho SB.SC=SE² chứng minh điểm E nằm trên đường tròn (SAOD)
Cho tam giác nhọn ABC (AB < AC). Đường tròn tâm O đường kính BC cắt cạnh AC, AB lần lượt tại D và E,BD và CE cắt nhau tại H.
a) Chứng minh: AEHD nội tiếp và xác định tâm I của đường tròn ngoại tiếp tứ giác AEHD
b) Chứng minh: IE là tiếp tuyến của đường tròn (O)
c) Vẽ đường lính EF của đường tròn (I),OF cắt đường tròn (I) tại M ,OI cắt ED tại K.Chứng minh: Tứ giác MKIF nội tiếp.
Cho tam giác abc nhọn nội tiếp đt (O;R) có 3 đường cao AK, BE,CF cắt nhau tại H
a/cm:tg AEHF nội tiếp (đã xong)
b/Hai đt BE,CF cắt (O) lần lượt tại M,N(M,N khác B, C).CM: MN//CF (đã xong)
c/Giả sử hai điểm B,C cố định, điểm A di động trên cung lớn BC của (O). Tìm vị trí của A để sao cho chu vi tam giác KEF lớn nhất