a: Kẻ OH vuông góc BC
=>OH là khoảng cách từ O đến BC
ΔOBC cân tại O
mà OH là đường cao
nên H là trung điểm của BC
=>\(HB=HC=\dfrac{BC}{2}=\dfrac{R\sqrt{3}}{2}\)
ΔOHB vuông tại H
=>\(OH^2+HB^2=OB^2\)
=>\(OH^2=OB^2-HB^2=R^2-\left(\dfrac{R\sqrt{3}}{2}\right)^2=\dfrac{R^2}{4}\)
=>OH=R/2
=>d(O;BC)=R/2
b: Xét ΔOBC có \(cosBOC=\dfrac{OB^2+OC^2-BC^2}{2\cdot OB\cdot OC}\)
=>\(cosBOC=\dfrac{R^2+R^2-3R^2}{2\cdot R\cdot R}=\dfrac{-1}{2}\)
=>\(\widehat{BOC}=120^0\)
ΔOBC cân tại O
=>\(\widehat{OBC}=\widehat{OCB}=\dfrac{180^0-120^0}{2}=30^0\)