Cho đường tròn (O;R) và cung AB với AB=R căn 3.Gọi I là trung điểm của AB A. chứng minh OI vuông gốc với AB B. Tính DI theo R C.tính góc AOB
Cho đường tròn (O), các bán kính OA, OB. Trên cung nhỏ AB lấy các điểm M và N sao cho AM = BN. Gọi C là giao điểm của các đường thẳng AM và BN. Chứng minh rằng :
a) OC là tia phân giác của góc AOB
b) OC vuông góc với AB
Bài 3: Cho hai đường tròn đồng tâm (O;R) và (O; ). Trên đường tròn nhỏ lấy một điểm M . Tiếp tuyến tại M của đường tròn nhỏ cắt đường tròn lớn tại A và B. Tia OM cắt đường tròn lớn tại C. a) Chứng minh rằng = ( cung CA bằng cung CB) b) Tính số đo của hai cung AB
Cho đường tròn (O;R) và một dây cung AB. Gọi I là trung điểm của AB, tia OR cắt cung AB tại M.
a) Cho R=5cm, AB=6cm. Tính AM.
b) Cho MN là đường kính của (O;R), biết AN=10cm và dây AB=12cm. Tính bán kính R.
Cứu giùm với ạTvT
Cho đường tròn tâm O, hai dây AB và CD vuông góc với nhau ở M. Biết AB = 18 cm, CD = 14 cm, MD =4 cm. Hãy tính: a) Bán kính của đường tròn (O). b) Khoảng cách từ tâm O đến mỗi dây AB và CD;
1) Cho đường tròn (O;R) hai bán kính OA,OB vuông góc với nhau, gọi OM là trung tuyến của Tam Giác AOB. Tính AB,OM theo R
Cho nửa đường tròn tâm O, đường kính AB. Trên AB lấy điểm C, D cách đều O. Từ C, D kẻ hai tia song song cắt nửa đường tròn ở C', D'. Chứng minh C'D' vuông góc CC
cho đường tròn tâm O và 2 dây AB, CD bằng nhau và cắt nhau tại I, sao cho D thuộc cung nhỏ AB. chứng minh điểm O cách đều AD, BC
Cho đường tròn tâm O bán kính 5cm, dây AB bằng 8cm
a) Tính khoảng cách từ tâm O đến dây AB
b) Gọi I là điểm thuộc dây AB sao cho AI = 1cm. Kẻ dây CD đi qua I và vuông góc với AB. Chứng minh rằng CD = AB