Cho (O;R) và điểm M nằm ngoài đường tròn. Từ M kẻ các tiếp tuyến MA, MB với đường tròn (O) (A, B là các tiếp điểm). Kẻ đường kính AD của đường tròn (O;R), gọi K là hình chiếu vuông góc của B trên đường thẳng AD. Gọi I là trung điểm của đoạn thẳng BK. Chứng minh: ba điểm M, I, D thẳng hàng
Cho đường tròn (O;R) và các tiếp tuyến AB, AC cắt nhau tại A nằm ngoài đường tròn (B, C là các tiếp điểm). Gọi H là giao điểm của BC và OA.
a) CMR: OA vuông góc với BC và \(OH.OA=R^2\)
b) Kẻ đường kính BD của đường tròn (O) và kẻ đường thẳng CK vuông góc với BD (K thuộc D). CMR: AO song song với CD và AC.CD=CK.AO
c) Gọi I là giao điểm của AD và CK. CMR: Tam giác BIK và tam giác CHK có diện tích bằng nhau
Cho đường tròn (O) bán kính R, từ A trên đường tròn (O) kể tiếp tuyến d của đường tròn (O). Trên d lấy điểm M bất kì ( \(M\ne A\) ). Vẽ cát tuyến MNP và gọi K là trung điểm của NP. Kẻ tiếp tuyến MB. Kẻ \(AC\perp MB\) và \(BD\perp MA\). Gọi H là giao điểm AC, BD. I là giao điểm OM và AB.
a) CM tứ giác AMBO nội tiếp
b) CM 5 điểm O,K,A,M,B nằm trên đường tròn
c) \(OI.OM=R^2\)
d) CM tứ giác OAHB là hình thoi
e) O,H,M thẳng hàng
d) Tìm quỹ tích điểm H,I,M di chuyển trên đường thẳng d
cho đường tròn tâm O bán kinh R và một đường thẳng (d) cố định, (d) và đường tròn (O;R) không giao nhau. gọi H là chân đường vuông góc kẻ từ (O) đến đường thẳng (d), M là một điểm ko thay đổi trên (d)(M ko trùng với H). từ M kẻ hai tiếp tuyến MA, MB với đường tròn (A,B là tiếp điểm). Dây cung AB cắt OH tại I.
a.cm O,A,B,H,M cung nằm trên một đường tròn
b.cm khi M thay đổi trên (d) thì AB luôn đi qua một điểm cố định
cho đường tròn tâm O bán kinh R và một đường thẳng (d) cố định, (d) và đường tròn (O;R) không giao nhau. gọi H là chân đường vuông góc kẻ từ (O) đến đường thẳng (d), M là một điểm ko thay đổi trên (d)(M ko trùng với H). từ M kẻ hai tiếp tuyến MA, MB với đường tròn (A,B là tiếp điểm). Dây cung AB cắt OH tại I.
cm khi M thay đổi trên (d) thì AB luôn đi qua một điểm cố định
cho (d) cắt (o,r) tại a,b lấy m thuộc d m nằm ngoài (o)mà ma>mb kẻ tiếp tuyến md với(o) cd là tiếp điểm kẻ dây ed vuông góc với mo tại n h là trung điểm ab chứng minh me là tiếp tuyến (o)
b,tứ giác mdho nội tiếp
Cho (O;R) và 1 đường thẳng d cố định cắt (O) tại 2 điểm C, D. Một điểm M di động trên d sao cho MC>MD và ở ngoài (O). Qua M kẻ tiếp tuyến MA,MB với đường tròn. Gọi H là trung điểm của CD, gọi giao của AB với MO, CH lần lượt là E và F. Chứng minh:
a) \(CE.OM=R^2\)
b) Tứ giác MEHF nội tiếp
c) Đường thẳng AB đi qua 1 điểm cố định
Từ điểm M nằm ngoài đường tròn (O) kẻ hai tiếp tuyến MA, MB (A, B là các tiếp điểm). Kẻ đường kính AC, tiếp tuyến tại C của đường tròn cắt AB tại D. Gọi I là trung điểm của MO.
a) Chứng minh 4 điểm M, A, O, B cùng thuộc một đường tròn.
b) Chứng minh AB.AD = AC2 .
c) Tia AI cắt đường thẳng BC tại K. Chứng minh tứ giác MOCK là hình bình hành.
cho đường tròn tâm o bán kính và m là một điểm nằm bên ngoài đường tròn . từ m kẻ hai tiếp tuyến từ ma,mb với đường tròn r (o) (a b là các tiếp điểm gọi e là giao điểm của ab và om