Vì \(AC=BC\) nên \(C\in\) trung trực AB
Vì \(OA=OB\) nên \(O\in\) trung trực AB
Do đó OC là trung trực AB
\(\Rightarrow OC\bot AB\) tại H và H là trung điểm AB
Do đó \(AH=\dfrac{1}{2}AB=3\)
Áp dụng HTL vào tam giác AHC: \(AH^2=HC\cdot HO=9\)
Vì \(AC=BC\) nên \(C\in\) trung trực AB
Vì \(OA=OB\) nên \(O\in\) trung trực AB
Do đó OC là trung trực AB
\(\Rightarrow OC\bot AB\) tại H và H là trung điểm AB
Do đó \(AH=\dfrac{1}{2}AB=3\)
Áp dụng HTL vào tam giác AHC: \(AH^2=HC\cdot HO=9\)
Cho đường tròn (O;R) và các tiếp tuyến AB, AC cắt nhau tại A nằm ngoài đường tròn (B, C là các tiếp điểm). Gọi H là giao điểm của BC và OA.
a) CMR: OA vuông góc với BC và \(OH.OA=R^2\)
b) Kẻ đường kính BD của đường tròn (O) và kẻ đường thẳng CK vuông góc với BD (K thuộc D). CMR: AO song song với CD và AC.CD=CK.AO
c) Gọi I là giao điểm của AD và CK. CMR: Tam giác BIK và tam giác CHK có diện tích bằng nhau
1. Cho đường tròn
(O;3cm) và điểm A thỏa mãn OA=5cm. Kẻ các tiếp tuyến AB,AC với đường tròn. Gọi H là giao điểm của AO với BC.
a) Tính OH.
b) Qua điểm M bất kỳ thuộc cung nhỏ BC kẻ tiếp tuyến với (O) cắt AB,AC theo thứ tự tại D và E. Tính chu vi tam giác ADE.
Cho (O) và dây cung AB. Trên tia AB lấy điểm C nằm ngoài đường tròn. Từ điểm chính giữa P của cung lớn AB kẻ đường kính PQ cắt dây AB tại D. Tia CP cắt đường tròn tại điểm thứ 2 là I. Các dây AB và QI cắt nhau tại K. Cho A, B, C là 3 điểm cố định. CMR: Khi O thay đổi nhưng vẫn đi qua A, B thì đường thẳng QI luôn đi qua 1 điểm cố định
Cho ∆ABC nhọn (AB < AC). Đường tròn tâm O đường kính BC cắt AB, AC tại M và N. Gọi H là giao điểm của BN và CM.
a) Chứng minh AH ^ BC tại D.
b) Gọi S là trung điểm AH. Chứng minh SN là tiếp tuyến của đường tròn (O).
c) Chứng minh OM là tiếp tuyến của đường tròn ngoại tiếp ∆AMN.
1. Cho đường tròn (O:R), dây BC khác đường kính. Qua O kẻ đường vuông góc với BC tại I, cắt tiếp tuyến tại B của đường tròn tại điểm A, vẽ đường kính BD.
a) Chứng minh: CD//OA
b) Chứng minh: AC là tiếp tuyến của đường tròn (O)
c) Đường thẳng vuông góc với BD tại O cắt BC tại K. Chứng minh \(\text{IK.IC+OI.IA=}R^2\)
Cho hai đường tròn (O;4cm), (I;2cm) cắt nhau tại hai điểm phân biệt A, B sao cho OAI ≠ 90o. Tiếp tuyến của đường tròn (O) tại A cắt đường tròn (I) tại C khác A.Tiếp tuyến của đường tròn (I) tại A cắt đường tròn (O) tại D khác A. Gọi E là giao điểm của AB và CD. Gọi P, Q lần lượt là trung điểm của AD, CD. Chứng minh :
a) Hai tam giác APQ, ABC đồng dạng
b) ED = 4EC
giúp em bài này với ạ.
Cho đường tròn tâm O đường kính AB, lấy điểm C thuộc đường tròn tâm O, với điểm C không trùng A và B. Gọi I là trung điểm của dây AC, D là giao điểm của tia OI và tiếp tuyến của đường tròn tâm O tại A.
a) Chứng minh tam giác ABC vuông.
b) Chứng minh DC là tiếp tuyến của đường tròn tâm O. Chứng minh DC2=DI.DO
c) Tia phân giác của góc BAC cắt dây BC tại điểm E và cắt đường tròn tâm O tại F, với F không trùng với A. Chứng minh rằng FA.FE=FB2
Cho đường tròn O và điểm A nằm ngoài đường tròn. Vẽ tiếp tuyến AB, AC. AO cắt BC tại M
a) c/m AO⊥BC
b) vẽ đường kính BE và AE cắt đường tròn tại F. Gọi G là trung điểm của EF, OG cắt BC tại H. c/m OM.OH= OH.OG
c/ C/m EH là tiếp tuyến của đường tròn tâm O
Cho đường tròn (O) và dây AB không là đường kính, C là một điểm trên AB, D là 1 điểm trên cung nhỏ AB của (O), OD cắt AB tại E. đường thẳng OC cắt \(\left(O^,\right)\)ngoại tiếp tam giác OAB tại F, EF cắt \(\left(O^,\right)\)tại G, GD cắt\(\left(O^,\right)\)tại H. Chứng minh:
1) tam giác OCD đồng dạng tam giác ODF từ đó suy ra góc CFD= góc CDO
2)Gọi S là trung điểm của CD. Chứng minh 3 điểm O,H,S thẳng hàng