Cho đường tròn (O;R) dây BC cố định(BC<2R) , điểm H nằm giữa B và C sao cho \(0< BH< \frac{BC}{2}\). Đường thẳng đi qua H và vuông góc với BC cắt cung lớn BC của đường tròn (O;R) tại A. Gọi E,F lần lượt là hình chiếu của B, C trên đường kính AD của đường tròn (O;R).
a, Chứng minh tứ giác AEHB nội tiếp và HE _|_ AC.
b, Gọi K và I lần lượt là tâm đường tròn ngoại tiếp các tam giác ABH và HEF . Chứng minh KI đi qua trung điểm của BC.
c, Chứng minh : HF // BD và cos \(\widehat{BAC}=\frac{OI}{R}\).