Cho đường tròn (O;R) có đường kính BC. Lấy điểm A bất kì nằm trên đường tròn (O;R) ao cho AB<AC. Kẻ dây AD vuông góc với BC tại H.
a) Tính AB, AC, AH theo R biết góc BCA = 30o.
b) CMR: AH.HD = BH.HC
c) Qua O kẻ đường thẳng vuông góc với AB tại K. Vẽ tiếp tuyến của đường tròn (O) tại B. GỌi E là giao điểm của OK và Bx. CMR: AE là tiếp tuyến của đường tròn (O)
d) Gọi I là giao điểm của AH và EC. CM: IK//BC
b: Xét (O) có
OH là một phần đường kính
AD là dây
OH\(\perp\)AD tại H
Do đó: H là trung điểm của AD
Suy ra: \(AH\cdot HD=AH^2\left(1\right)\)
Xét (O) có
ΔBAC nội tiếp đường tròn
BC là đường kính
Do đó: ΔBAC vuông tại A
Xét ΔBAC vuông tại A có AH là đường cao ứng với cạnh huyền BC
nên \(BH\cdot HC=AH^2\left(2\right)\)
Từ (1) và (2) suy ra \(AH\cdot HD=HB\cdot HC\)