Cho đường tròn (O) và một điểm A nằm ngoài đường tròn (O). Từ A vẽ hai tiếp tuyến AB, AC của đường tròn (O) (B và C là hai tiếp điểm tiếp điểm). Gọi H là giao điểm của OA và BC.
a) Chứng minh OA vuông góc với BC tại H
b) Từ B vẽ đường kính BD của (O), đường thẳng AD cắt (O) tại E (khác D). Chứng minh: AE.AD = AH.AO
c) Qua O vẽ đường thẳng vuông góc với cạnh AD tại K và cắt đường BC tại F. Chứng minh FD là tiếp tuyến của đường tròn (O
a: Xét (O) có
AB,AC là các tiếp tuyến
nên AB=AC
mà OB=OC
nen OA là đường trung trực của BC
b: Xét (O) có
ΔBED nội tiếp
BD là đường kính
Do đó: ΔBED vuông tại E
Xét ΔDBA vuông tại B có BE là đường cao
nên AE*AD=AB^2=AH*AO