Bài 27. Góc nội tiếp

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
datcoder

Cho đường tròn (O) và hai dây cung AB, CD cắt nhau tại điểm I nằm trong (O) (H.9.9).

a) Biết rằng \(\widehat{AOC}\) = 60°, \(\widehat{BOD}\) = 80°.Tính số đo của góc AID.

b) Chứng minh rằng IA . IB = IC . ID.

datcoder
24 tháng 10 lúc 16:47

a) Xét đường tròn tâm (O) có:

+ Vì góc IAC là góc nội tiếp chắn cung BC nên $\widehat{IAC}=\frac{1}{2}sđ\overset\frown{CB}$.

+ Vì góc ACI là góc nội tiếp chắn cung AD nên $\widehat{ACI}=\frac{1}{2}sđ\overset\frown{AD}$.

+ Vì góc DOB là góc ở tâm chắn cung DB nên \(sđ\overset\frown{DB}=\widehat{DOB}={{80}^{o}}\)

+ Vì góc AOC là góc ở tâm chắn cung AC nên \(sđ\overset\frown{AC}=\widehat{AOC}={{60}^{o}}\)

Ta có: $\widehat{IAC}+\widehat{ACI}=\frac{sđ\overset\frown{CB}+sđ\overset\frown{AD}}{2}=\frac{{{360}^{o}}-sđ\overset\frown{DB}-sđ\overset\frown{AC}}{2}=\frac{{{220}^{o}}}{2}={{110}^{o}}$

Vì góc AID là góc ngoài tại đỉnh I của tam giác AIC nên: \(\widehat {AID} = \widehat {IAC} + \widehat {ACI} = {110^o}\)

b) Vì hai góc nội tiếp IAD và ICB cùng chắn cung DB của đường tròn (O) nên \(\widehat {IAD} = \widehat {ICB}\)

Lại có: \(\widehat {AID} = \widehat {CIB}\) (hai góc đối đỉnh)

Do đó, $\Delta IAD\backsim \Delta ICB\left( g-g \right)\Rightarrow \frac{IA}{IC}=\frac{ID}{IB}\Rightarrow IA.IB=IC.ID$ (đpcm)