đề đúng hết ko vậy bạn sao mjk vẽ hình ko đc
đề đúng hết ko vậy bạn sao mjk vẽ hình ko đc
Cho đường tròn (O) Từ M nằm ngoài đường tròn (O) kẻ tiếp tuyến MA,MC, cát tuyến MBD . OM cắt AC tại H .Từ C kẻ đường thẳng song song với BD cắt đường tròn (O) tại E. AE cắt BD tại K.
Chứng minh rằng:
a) OAMC nội tiếp
b) K là trung điểm BD
c) AC là phân giác ∠BHD
Cho đường tròn (O) Từ M nằm ngoài đường tròn (O) kẻ tiếp tuyến MA,MC, cát tuyến MBD . OM cắt AC tại H .Từ C kẻ đường thẳng song song với BD cắt đường tròn (O) tại E. AE cắt BD tại K.
Chứng minh rằng:
a) OAMC nội tiếp
b) K là trung điểm BD
c) Ac là phân giác ∠BHD
cho đường tròn(o;r), từ điểm a ở bên ngoài đường tròn kẻ 2 tiếp tuyến ab, ac với đường tròn(o) (b,c là tiếp điểm) từ b kẻ đường thẳng song song ac cắt đường tròn(o) tại d(d khác b), đường thẳng ad cắt đường tròn (o) tại e( e khác d) a) chứng minh tứ giác aboc nội tiếp b) chứng minh ab²= ae×ad c) giả sử oa=2r. Tính góc bec và diện tích obac d) so sánh góc cea và góc bec
Từ điểm A nằm ngoài đường tròn (O) kẻ hai tiếp tuyến AB,AC (B,C là tiếp điểm). Kẻ cát tuyến ADE,H là trung điểm của DE. Chứng minh :
a/ Tứ giác ABOC nội tiếp
b/ AB2 = AD.AE
c)bh cắt (O) tại K : cm AE//Ck
cho một đường tròn (O;R) từ điểm A nằm ngoài đường tròn vẽ hai tiếp tuyến AB và AC với đường tròn.
a, chứng minh ABOC nội tiếp.
b,D là trung điểm AC và BD cắt đường tròn tại E, AE cắt đường tròn tại F. Chứng minh AB2= AE•AF
c, i là giao điểm ao với (o) chứng minh BC=CF
cho đường tròn(O;R) từ điểm M nằm ngoài(O) vẽ hai tiếp tuyến MA, MB( A,B là tiếp điểm). Vẽ đường kính AC của(O), MC cắt (O) tại D(D khác C). OM cắt AB tại H a) chứng minh tứ giác MAOB nội tiếp và MB^2=MC.MD b)chúng minh MO.MH=MC.MD c) CH cắt (O) tại I(Ikhacs C). chúng minh tứ giác COIM nội tiếp d) tính số đo góc MIB
Bài 4: ( 3 điểm) Cho đường tròn (O). Từ một điểm M nằm ngoài đường tròn kẻ tiếp tuyến MA và cát tuyến MBC với (O) ( A là tiếp điểm, MB< MC), B và A năm cùng phía đối với MO). Kẻ đường kính AD của đường tròn (O),MO cắt CD tại E. Gọi H là hình chiếu của A trên MO.
1/ Chứng minh tứ giác AHEC nội tiếp
2/ Chứng minh MBA đồng dạng MAC và MB.MC= MH.MO
3/ Chứng minh BDC =1/2 BHC và AE//BD