Cho tam giác ABC có ba góc nhọn.Đường tròn đường kính BC cắt cạnh AB,AC lần lượt tại E và F,BF cắt EC tại H a,chứng minh AN vuông góc BC và tứ giác HFCN nội tiếp
Cho điểm M thuộc cạnh a của tam giác ABC vuông tại A Vẽ đường tròn O đường kính MC cắt BC tại E D BM cắt đường tròn O tại D tia AD cắt đường tròn O tại E AE cắt đường tròn O tại f Chứng minh câu a tứ giác ABCD nội tiếp K là phân giác góc s a b c a b c d đồng quy câu d d m là phân giác góc ade câu a m là tâm đường tròn nội tiếp tam giác hde f d f song song AB
Cho đường (O), từ điểm A nằm ngoài đường tròn (O) kế hai tiếp tuyến AB, AC (B, C là các tiếp điểm). a) Chứng minh tứ giác OBAC nội tiếp. b) Chứng minh OA vương BC tại H. c) Trên đoạn thẳng BH lấy điểm D, kẻ đường thẳng vuông góc với OD tại D cắt các tiếp tuyến AB, AC lần lượt tại E, F. Chứng minh DE = EF
Cho tam giác ABC cân tại B có AB < AC nội tiếp trong đường tròn (O). Gọi (d) là tiếp tuyến với đường tròn tại điểm A. Một đường thẳng song song với (d) cắt các cạnh AB, AC và đường thẳng BC lần lượt tại D, E và I. a) Chứng minh rằng số do hai cung nhỏ BA và BC bằng nhau. b) Chứng minh rằng góc ABC = AED. c) Chứng minh tứ giác BCED nội tiếp. d) Chứng minh rằng IB.IC =
Trên đường tròn bán kính R lần lượt đặt theo cùng một chiều, kể từ điểm A, ba cung AB, BC, CD sao cho số đo cung AB = 60o; số đo cung BC = 90o và số đo cung CD = 120o.
a) Tứ giác ABCD là hình gì?
b) Chứng minh rằng hai đường chéo của tứ giác ABCD vuông góc với nhau.
c) Tính độ dài các cạnh của tứ giác ABCD theo R.
Câu 1 cho nửa đường tròn đường kính AB và một dây CD. Qua C vẽ đường thẳng vuông góc với CD cắt AB tại A và B của nửa đường tròn CD theo thứ tự E và F chứng minh rằng
a) các tứ giác AECI, BFCI nội tiếp được
b) tam giác IEF vuông
Câu 2 cho tứ giác ABCD nội tiếp nửa đường tròn đường kính AD hai đường chéo AC và BD cắt nhau tại e kẻ EF vuông với AD gọi M là trung điểm của DE chứng minh
a) các tứ giác abef và dcef nội tiếp được
b) ca là tia phân giác của góc BCF
c) tứ giác BCMF nội tiếp được
Câu 3 tam giác ABC cân tại A có cạnh đáy nhỏ hơn cạnh bên nội tiếp dường tròn (O)tiếp tuyến tại B và C của đường tròn lần lượt cắt tia AC và tia AB ở D và E chứng minh
a) BD2 = AD.CD
b) tứ giác BCDE là tứ giác nội tiếp
c) BC song song với DE
Câu 4 cho tam giác ABC nội tiếp đường tròn (O) các đường cao BD và CE cắt nhau tại H (\(D\in AC\) ,\(E\in AB\))
a) chứng minh adhe, BCDE là các tứ giác nội tiếp
b) chứng minh AE.AB =AD.AC
c) gọi I là tâm đường tròn ngoại tiếp tứ giác BCDE biết gốc ACB bằng 60độ ; BC=6cm. Tính độ dài cung nhỏ DC của (I) và diện tích hình quạt tròn IDC.
Bài 1: Cho (O;R) đường kính AB. Góc I là diểm nằm giữa A và O. Qua I vẽ dây cung CD vuông góc với OA. Dụng các tiếp tuyến tại A và B của đường tròn. Tiếp tuyến tại C cắt tiếp tuyến tại A và B lần lượt ở E và F.
a) Chứng minh 4 điểm A,E,C,O cùng thuộc 1 đường tròn.
b) Tính độ dài CI biết AB =20 cm , AI =4cm
c) Cm góc ÈO=90 độ và AE.BE=R^2
Cho tam giác ABC có 3 góc nhọn , ABC=75 độ , (ab<ac, ac cố định ) nội tiếp đường tròn tâm o . các đường cao AF và CE của tam giác abc cắt nhau tại h ( f thuộc bc , e thuộc ab )
a cm tứ giác BEHF nội tiếp
b kẻ đường kính ak của đường tròn o .chứng minh ; hai tam giác abk và afc đồng dạng
c khi b di chuyển trên cung lớn ac thì điểm H di chuyển trên đường nào
giúp mình câu c ạ !!!
Cho tam giác ABC có đường tròn bàng tiếp góc A tiếp xúc với BC tại D. Chứng minh rằng đường tròn bàng tiếp góc A của hai tam giác ABD, ACD tiếp xúc với AD tại một điểm chung .