Cho đường tròn (o) ngoại tiếp tam giác nhọn ABC.Vẽ đường cao AH (H thuộc cạnh BC).Vẽ HE vuông góc với AB (E thuộc AB),HF vuông góc với AC (F thuộc AC).
a) CMR: AEHF là tứ giác nội tiếp
b) CMR: góc ABC + góc HFE = 90 độ
c) Gọi M là giao điểm của BF và HE,N là giao điểm của HF và CE. Chứng minh rằng MN song song với BC
Cho đường tròn (o) ngoại tiếp tam giác nhọn ABC.Vẽ đường cao AH (H thuộc cạnh BC).Vẽ HE vuông góc với AB (E thuộc AB),HF vuông góc với AC (F thuộc AC).
a) CMR: AEHF là tứ giác nội tiếp
b) CMR: góc ABC + góc HFE = 90o
c) Gọi M là giao điểm của BF và HE,N là giao điểm của HF và CE.
Chứng minh rằng MN song song với BC
Mình cần gấp giúp mình với!!!
*Bài 1: Cho đường tròn (O) ngoại tiếp tam giác nhọn ABC. Vẽ đường cao AH (H thuộc cạnh BC). Vẽ HE vuông góc với AB (E thuộc AB), HF vuông góc với AC (F thuộc AC).
a) Chứng minh rằng AEHF là tứ giác nội tiếp
b) Chứng minh rằng ABC + HFE = 90°
c) Gọi M là giao điểm của BF và HE, N là giao điểm của HF và CE.
Chứng minh rằng MN song song với BC.
* Bài 2: Cho tam giác ABC có A= 60°. Các điểm 0, I lần lượt là tâm đường tròn ngoại tiếp, nội tiếp tam giác. Chứng minh rằng bốn điểm B, 0, I, C cùng thuộc một đường tròn.
Cho tam giác nhọn ABC có AB < AC. Vẽ đưong tròn tâm O, đường kính
BC cắt AB, AC lần lượt tại E, F. Gọi H là giao điểm của BF và CE.
a) Chứng minh tứ giác AEHF là tứ giác noi tiếp.
cho tam giác abc vuông tại a kẻ đường cao ah vẽ đuòng tròn đuòng kính ah đường tròn cắt ab tại e cắt ac tại F , gọi m là giao điểm của CE và BF . So sánh diện tích tứ giác AEMF và diện tích tam giác BMC
Cho tam giác ABC nhọn (AB<AC) nội tiếp đường tròn (O;R) ; H là giao điểm của 3 đường cao AD,BE và CF. a) gọi G,S lần lượt là trung điểm của CB, CH. Cm các tg sau nội tiếp : DHEC, BFEC, FESG và OA⊥EF.
b) gọi I là trung điểm AH. Cm: IE là tiếp tuyến của đường tròn (BEF)
c) Gọi K là giao điểm của DF và BE. Chứng minh BE.KH = BK.HE
Cho ∆ ABC nhọn nội tiếp đường tròn (O;R)(AB<AC) có các đường cao AD và BE cắt nhau tại H. Gọi M là trung điểm BC . Đường tròn (K) đường kính AH cắt AM tại P. Gọi R' là bán kính đường tròn ngoại tiếp tam giác BPC
Cmr tứ giác HDMP nội tiếp được đường tròn
Cho tam giác ABC, 2 đường cao AI và BK cắt nhau tại H. Gọi D là điểm đối xứng của H qua I. Vẽ CE vuông góc BD tại E. Gọi F là giao điểm của AC và BE. Vẽ FN vuông góc BC tại N. Chứng minh: a. Tứ giác AKIB nội tiếp b. Tam giác BHC = tam giác BDC c. CK = CE d. Ba đường thẳng BK, CE, FN đồng quy.
cho tam giác ABC nhọn ABC nội tiếp đường tròn (O).E là điểm chính giữa cung nhỏ BC. Gọi M là điểm trên cạnh AC sao cho EM=MC( M khác C) N là giao điểm BM với đường tròn tâm O ( N khác B). Gọi I là giao điểm của BM và AE, K là giao điểm của AC với EN. c/m tứ giác EKMI nội tiếp