Cho đường tròn (O;R). Lấy K là 1 điểm bên ngoài đường tròn, vẽ 2 tiếp tuyến KA và KB. Gọi M là giao điểm của AB và OK, đường thẳng qua M // với KB cắt cung nhỏ AB tại C. Tia KC cắt đường tròn (O) tại D ( D khác C) , cắt AB tại I, gọi H là trung điểm của CD.
a, C/m: 5 điểm K, A, O, H, B cùng thuộc 1 đường tròn
b, C/m: Tứ giác ODAI nội tiếp
c, C/m: OM.OK + KC.KD = KO2
d, C/m: MA là phân giác của góc CMD
e, Cho R = 5cm, KO = 10cm. Tính diện tích hình viên phân giới hạn bởi dây AB và cung nhỏ AB
Giúp mik với :((( Cho đường tròn tâm O bán kính R và hai đường kính AB, CD vuông góc với nhau. Điểm M bất kì thuộc cung nhỏ BC (với M khác B và C). Gọi I là giao điểm của AM và BC, J là hình chiếu của I trên AB. Chứng minh rằng: a) Tứ giác BMIJ là tứ giác nội tiếp b) JI là phân giác của góc CJM c) J, M, D thẳng hàng
Nếu đc thì các bạn vẽ hình giúp mik với ;-;
Mik cảm ơn ;-;
: Cho đường tròn (O) bán kính R và một dây BC cố định. Gọi A là điểm chính giữa của cung nhỏ BC. Lấy điểm M trên cung nhỏ AC, kẻ tia Bx vuông góc với tia MA ở I và cắt tia CM tại D.
1) Chứng minh AMD=ABC và MA là tia phân giác của góc BMD.
2) Chứng minh A là tâm đường tròn ngoại tiếp tam giác BCD và góc BDC có độ lớn không phụ thuộc vào vị trí điểm M.
Cho đường tròn tâm O đường kính AB. Lấy điểm C nằm trên đường tròn sao cho số đo cung AC gấp đôi số đo cung CB. Tiếp tuyến tại B với đường tròn (O) cắt AC tại E. Gọi I là trung điểm của dây AC. a) Chứng minh rằng tứ giác IOBE nội tiếp b) Chứng minh EB→ = EC . EA c) Biết bán kính đường tròn (O) bằng 2cm, tính diện tích tam giác ABE. Giải giúp em với ạ
Cho đường tròn tâm (O) đường kính AB cố định, một điểm I cố định nằm giữa A và O sao cho OI < AI. Kẻ dây MN ^AB tại I. Goi C là điểm tùy ý thuộc cung lớn MN sao cho C không trùng với M, N, B. Gọi E là giao điểm của AC và NM.
1. Chứng minh rằng: tứ giác IECB nội tiếp.
2. Chứng minh rằng DAME ~ DACM và AM2 = AE.AC
3. Chứng mịnh rằng AE.AC – AI.BI = AI2
4. Xác định vị trí của điểm C sao cho khoảng cách từ N đến tâm đường tròn ngoại tiếp tam giác MCE nhỏ nhất.
Cho đường tròn (O) đường kính AB=2R. Vẽ bán kính OC vuông góc với AB. Lấy điểm K thuộc cung nhỏ AC, kẻ KH vuông góc với AB tại H. Tia AC cắt HK tại I, tia BC cắt tia HK tại E, AE cắt đường tròn (O) tại F.
a) Chứng minh BHFE là tứ giác nội tiếp
b) Chứng minh BI.BF=BC.BE
c) Tính diện tích tam giác FEC theo R khi H là trung điểm của OA
d) Cho K di chuyển trên cung nhỏ AC, chứng minh đường thẳng FH luôn đi qua một điểm cố định
Cho nửa đường tròn ( O ) với đường kính là AB và C là điểm chính giữa cũng AB. Trên cung AC lấy điểm M tùy ý, đường thẳng AM cắt đường thẳng BC tại D. a) C/minh: góc DMC = gíc ABC b) Trên tia BM lấy điểm N sao cho BN = AM C/minh: MC = NC