ΔOAB cân tại O
mà OI là đường cao
nên I là trung điểm của AB
\(AI=\sqrt{10^2-6^2}=8\left(cm\right)\)
AB=2*8=16cm
ΔOAB cân tại O
mà OI là đường cao
nên I là trung điểm của AB
\(AI=\sqrt{10^2-6^2}=8\left(cm\right)\)
AB=2*8=16cm
cho nửa đường tròn tâm O đường kính AB
Ax là tiếp tuyến của đường tròn( O )dây AD khác đường kính qua O kẻ đường thẳng vuông góc với AC cắt Ax tại S . BC cắt Ax tại C
a Tính AC ? biết R = 6 cm góc ABC = 40°
b) Chứng minh SD là tiếp tuyến của (O)
c) BC cắt AS tại C. Chứng minh : BD.BC = 4R2
d) Chứng minh SA = SC
e) kẻ DH vuông góc với AB ; AH cắt BS tại E . CM : E là trung điểm của DH
Cho đường tròn tâm O bán kính R, dây BC khác đường kính, Hai tiếp tuyến của đường tròn (O;R) tại B và tại C cắt nhau tại A. Kẻ đường kính CD, kẻ BH vuông góc với CD tại H.
a) Chứng minh $AO \bot BC.$
b) Cho biết $R = 15, BC = 24 (cm).$ Tính AB, OA.
c) Chứng minh BC là tia phân giác $\widehat{ABH}.$
Em cần câu c thôi ạ.
Hình vẽ.
Cho đường tròn (O), đường kính AB,dây AC không đi qua tâm O(AC<BC).Gọi H là trung điểm của AC.a)Tính góc ACB,chứng minh OH\\BC. b) Tiếp tuyến tại C của đường tròn O cắt tia OH tại M.Chứng mình MA là tiếp tuyến tại A của đường tròn O. c) Cho AB=10cm,BC=8cm.Tính chủ vi tam giác AMC. d) Kẻ CK vuông góc với AB tại K.Đoạn thẳng MB cắt đoạn thẳng CK tại I.Chứng mình I là trung điểm của CK
cho đường tròn (O) đường kính AB=2R.Lấy điểm M thuộc đường tròn (O) (M khác A và B).Qua O kẻ đường thẳng vuông góc với AM cắt tiếp tuyến của (O) (tiếp điểm A) tại C a) c/m:tam giác AOC=tam giác MOC và MC là tiếp tuyến (O) b) Qua B kẻ tiếp tuyến với (O) cắt CM lại D. c/m tam giác COD vuông và AC.BD=R^2 c) kẻ MH vuông góc AB.C/m rằng ba đường AD,BC,MH đồng quy
Cho (O; R), điểm A nằm ngoài đường tròn (O), kẻ tiếp tuyến AB của đường tròn (O), (B là tiếp tuyến). Qua B kẻ đường thẳng vuông góc với OH tại H, cắt đường tròn (O) tại C. Biết HB=8cm, độ dài BC bằng: A,4cm B,5cm C,10cm D,16cm
Cho tam giác ABC vuông tại A (AB > AC), có đường cao AH. Vẽ đường tròn tâm C, bán kính CA. Đường thẳng AH cắt đường tròn (O) tại điểm thứ hai D.
a) Chứng minh BD là tiếp tuyến của đường tròn (O).
b) Qua C kẻ đường thẳng vuông góc với BC cắt các tia BA, BD thứ tự tại E, F. Trên cung nhỏ AD của (O) lấy điểm M bất kỳ, qua M kẻ tiếp tuyến với (O) cắt AB, BD lần lượt tại P. Q. Chứng minh: \(2\sqrt{PE.QF}=EF\)