1101000100101101010010100110101011011010111100110010100101001100101001010101001001001010100101001
1101000100101101010010100110101011011010111100110010100101001100101001010101001001001010100101001
Cho đường tròn tâm O, đường kính AB. Qua điểm C thuộc đường tròn (C khác A và B) kẻ tiếp tuyến d với đường tròn. Từ O kẻ đường thẳng vuông góc với BC cắt BC tại I và cắt tiếp tuyến d tại M.
a) chứng minh IB = IC
b) chứng minh △MBO = ΔMCO, suy ra MB là tiếp tuyến của đường tròn tâm O
c) từ A kẻ AE vuông góc với d (E thuộc d), từ C kẻ CH vuông góc với AB (H thuộc AB). chứng minh CE2 = AE.BH
cho tam giác abc vuông tại a ab lớn hơn ac nội tiếp đường tròn tâm o đường cao ah gọi d là điểm đối xứng với a qua bc gọi k là hình chiếu vuông góc của a lên bc qua h kẻ đường thẳng song song với bc cắt ac tại i đường thẳng bd cắt đường tròn tâm o tại n (n khác b ) tiếp tuyến của đường tròn o tại d cắt đường thẳng bc tại p . chứng minh đường thẳng bc tiếp xúc với đường tròn ngoại tiếp tam giác anp
Cho đường tròn tâm O đường kính AB . Gọi H là điểm nằm giữa O và B . Kẻ dây CD vuông góc với AB tại H . Trên cung nhỏ AC lấy điểm E , kẻ CK vuông góc với AE tại K . Đường thẳng DE cắt CK tại F . Chứng minh :
a, Tứ giác AHCK nội tiếp đường tròn
b, AH . AD = AD^2
c, Tam giác ACF cân
Cho tam giác ABC có: góc B = 90 độ + góc C , nội tiếp đường tròn O. Qua B kẻ đường thẳng vuông góc với BC cắt đường tròn O tại I, tiếp tuyến của đường tròn O kẻ từ A cắt BC tại H. Chứng minh :
a) AH vuông góc BC
b) AB^2 + AC^2 = 4R^2
Cho tam giác ABC nhọn có AB<AC nội tiếp (O), gọi AD là đường kính của (O), tiếp tuyến tại D của (O) cắt BC tại M, đường thẳng MO cắt AB và AC lần lượt tại E, F
a) Chứng minh : MD2=MC.MB
b) Gọi H là trung điểm của BC, qua B vẽ đường thẳng song song với MO đường thẳng này cắt AD tại P. Chứng minh đường tròn ngoại tiếp tam giác BHD đi qua P
c) Chứng minh O là trung điểm của EF
1. Cho đường tròn (O:R), dây BC khác đường kính. Qua O kẻ đường vuông góc với BC tại I, cắt tiếp tuyến tại B của đường tròn tại điểm A, vẽ đường kính BD.
a) Chứng minh: CD//OA
b) Chứng minh: AC là tiếp tuyến của đường tròn (O)
c) Đường thẳng vuông góc với BD tại O cắt BC tại K. Chứng minh \(\text{IK.IC+OI.IA=}R^2\)
Cho tam giác ABC nội tiếp đường tròn tâm O, đường phân giác của góc A và góc B cắt nhau tại I , cắt đường tròn tâm O lần lượt tại D và E, gọi E là giao điểm của AC và DE. Chứng minh :
a) DE là đường trung trực của IC
b) IF song song BC
Cho nửa đường tròn kính BC. Trên nửa đường tròn lấy điểm A. Kẻ AH vuông góc với BC (H thuộc BC). Trên cung BC lấy điểm D, BD cắt AH tại I
a) Chứng minh: Tứ giác IHCD nội tiếp
b) Chứng minh: \(AB^2=BI.BD\)
c) Tâm đường tròn ngoại tiếp tam giác AID luôn nằm trên 1 đường cố định khi D thay đổi trên cung AC