Trên đường tròn (O) dựng dây BC không đi qua tâm. Trên tia đối của tia BC. Lấy điểm M. Đường thẳng đi qua M cắt đường tròn (O) lần lượt tại N và P, sao cho O nằm trong góc PMC. Trên cung nhỏ NP lấy điểm A sao cho cung AN bằng cung AP. Nối AB và AC lần lượt cắt NP ở D và E. Chứng minh rằng:
a) Góc ADE= Góc ACB.
b) Tứ giác BDEC nội tiếp.
c) MB.MC=MN.NP.
d) Nối OK cắt NP tại K. Chứng minh MK2>MB.MC
giải chi tiết giúp mk vs! mk đang cần gấp
Cho nửa đường tròn (O; R) đường kính AB. Từ O kẻ đường thẳng vuông góc với AB và cắt đường tròn (O) tại điểm C. Trên cung CB lấy một điểm M bất kì. Kẻ CH vuông góc với AM tại H. Gọi N là giao điểm của OH và MB.
a. Chứng minh tứ giác CHOA nội tiếp được.
b. Chứng minh ˆCAO=ˆONB=45°CAO^=ONB^=45°
c. OH cắt CB tại điểm I và MI cắt (O) tại điểm thứ 2 là D. Chứng minh
CM // BD
Giải giúp mình câu c với ạ
cho nửa đường tròn (O,R), đường kính AB. Từ O kẻ đường thẳng vuông góc với AB và cắt (O) tại điểm C. Trên cung CB lấy 1 điểm M bất kì. Kẻ Ch vuông góc với AM tại H. Gọi N là giao điểm của OH và MB
a) CM tứ giác CHOA nội tiếp
b) CM: góc CAO=góc ONB=45độ
c) OH cắt CB tại I và MI cắt đường tròn (O) tại điểm thứ hai là D. CM: CM//BD
d) Xác định vị trí của M để ba điểm D,H, B thẳng hàng
cho nửa đường tròn (O,R), đường kính AB. Từ O kẻ đường thẳng vuông góc với AB và cắt (O) tại điểm C. Trên cung CB lấy 1 điểm M bất kì. Kẻ Ch vuông góc với AM tại H. Gọi N là giao điểm của OH và MB
a) CM tứ giác CHOA nội tiếp
b) CM: góc CAO=góc ONB=45độ
c) OH cắt CB tại I và MI cắt đường tròn (O) tại điểm thứ hai là D. CM: CM//BD
d) Xác định vị trí của M để ba điểm D,H, B thẳng hàng
Giúp với, trừ câu a
53.Cho tam giác ABC cân tại A.Gọi O là trung điểm BC.Vẽ OH,OK lần lượt vuông góc với AB,AC(Hϵ AB,Kϵ AC).
a)C/m AH,AK là các tiếp tuyến của đường tròn (O;OH).
b)Gọi I là 1 điểm trên cung nhỏ HK của đường tròn (O).Vẽ tiếp tuyến đường tròn (O) tại I cắt AB,AC lần lượt tại M,N.C/m chu vi tam giác AMN=AH+AK.
c)C/m góc MON=góc B=góc C.
d)C/m các tam giác BMO,OMN,CON đồng dạng vs nhau.
cho đường tròn tâm (O;R) đường kính AB và điểm M trên đường tròn O sao cho góc MAB= 60 độ. Kẻ dây MN vuông góc với AB tại H:
1. Chứng minh AM và AN là các tiếp tuyến của đường tròn (B;BM)2. Chứng minh MN2= 4AH.HB3. Chứng minh tam giác BMN là tam giác đều và điểm O là trọng tâm của nó4. Tia MO cắt đường tròn (o) tại E, tia MB cắt (B) tại F. Chứng minh 3 điểm: N,E,F thẳng hàng.Câu 1: Cho đường tròn (O; R), lấy B \(\in\) (O) gọi H là trung điểm của đoạn OB. Dây CD vuông góc với OB tại H. Tính số đo cung nhỏ và cung lớn CD
Câu 2: Cho tam giác ABC cân tại A. Vẽ (O) đường kính BC. Đường tròn (O) cắt AB và AC lần lượt tại M và N
a) Chứng minh các cung nhỏ BM và CN có số đo bằng nhau
b) Tính \(\widehat{MON}\), biết \(\widehat{BAC}\) = \(40^o\)
Cho (O) ,đường kính BC , A là điểm di động đường tròn (O) . Gọi I là tâm đường tròn nội tiếp tam giác ABC .Khi A di chuyển trên (O) thì :
A, I thuộc cung chứa góc 135 độ dừng trên đoạn AB .
B, I thuộc cung chứa góc 135 độ dừng trên đoạn AC .
C, I thuộc cung chứa góc 135 độ dừng trên đoạn BC .
D, I thuộc cung chứa góc 45 độ dừng trên đoạn BC .
Cho (O) ,đường kính BC , A là điểm di động đường tròn (O) . Gọi I là tâm đường tròn nội tiếp tam giác ABC .Khi A di chuyển trên (O) thì :
A, I thuộc cung chứa góc 135 độ dừng trên đoạn AB .
B, I thuộc cung chứa góc 135 độ dừng trên đoạn AC .
C, I thuộc cung chứa góc 135 độ dừng trên đoạn BC .
D, I thuộc cung chứa góc 45 độ dừng trên đoạn BC .
Anh em giúp tôi mai mình kiểm tra rồi nhé