(x-1)^2+(y-1)^2=25
=>R=5; I(1;1)
\(d\left(I;\text{Δ}\right)=\dfrac{\left|1\cdot3+1\cdot4+33\right|}{\sqrt{3^2+4^2}}=\dfrac{40}{5}=8>5\)
=>Δ nằm ngoài (C)
Lập đường thẳng đi qua I và vuông góc với 3x+4y+33=0
=>(d'): -4x+3y+c=0
Thay x=1 và y=1 vào (d'), ta được:
c-4+3=0
=>c=1
=>-4x+3y+1=0
-4x+3y+1=0 và (x-1)^2+(y-1)^2=25
=>-4x=-3y-1 và (x-1)^2+(y-1)^2=25
=>x=3/4y+1/4 và (3/4y+1/4-1)^2+(y-1)^2=25
=>9/16(y-1)^2+(y-1)^2=25 và x=3/4y+1/4
=>(y-1)^2=16 và x=3/4y+1/4
=>(y=5 hoặc y=-3) và x=3/4y+1/4
=>(x,y)=(4;5) hoặc (x,y)=(-2;-3)
=>M1(4;5); M2(-2;-3)
Δ: 3x+4y+33=0; (d'): -4x+3y+1=0
=>H(-19/5; -27/5)
\(M_1H=\sqrt{\left(-\dfrac{19}{5}-4\right)^2+\left(-\dfrac{27}{5}-5\right)^2}=13\)
\(M_2H=\sqrt{\left(-\dfrac{19}{5}+2\right)^2+\left(-\dfrac{27}{5}+3\right)^2}=3\)
=>\(d_{min}=3;d_{max}=13\)