Trong mặt phẳng với hệ trục tọa độ Oxy, cho \(\overrightarrow{v}\)= (3;1) và đường thẳng Δ: x+2y-3= 0. Tìm phương trình đường thẳng Δ' là ảnh của Δ qua phép biến hình có được bằng cách thực hiện liên tiếp \(T_{\overrightarrow{v}}\) và \(Q_{\left(O;90^o\right)}\)
cho hs y=2x+3/x-2
viết phương trình tiếp tuyến của đồ thị hàm số biết tiếp tuyến song song với đường thẳng d: y=-1/7x+5
Cho hai đường thẳng d1 và d2 . Điều kiện nào sau đây đủ để kết luận d1 và d2 chéo nhau :
A. d1 và d2 không có điểm chung
B. d1 và d2 không cùng nằm trên một mặt phẳng bất kỳ
C. d1 và d2 là hai cạnh của tứ diện
D. d1 và d2 là hai cạnh của tứ diện
Trong không gian , số vị trí tương đối của đường thẳng và mặt phẳng ?
A. 1
B. 3
C. 2
D. 4
Cho hình lập phương ABCD.A'B'C'D' . Gọi R, N, Q là các điểm thuộc các cạnh A'D', BC, C'D'
a) Tìm giao điểm I và K của đường thẳng RQ với các mặt phẳng (AA'B'B), (BB'C'C)
b) Tìm giao điểm P và J của đường thẳng NK với các mặt phẳng (CC'D'D), (AA'B'B)
c) Tìm giao điểm S và M của đường thẳng IJ với các mặt phặng (ADD'A'), (ABCD)
d) Tìm giao tuyến của mặt phẳng (NQR) với các mặt phẳng của hình lập phương
e) Tìm thiết diện của mặt phẳng (NQR) với hình lập phương
1, nêu tất cả các cách xác định mặt phẳng
2, nêu tất cả các quy tắc vẽ hình biểu diễn ( kể cả phép chiếu song song)
3, nêu các cách xác định giao tuyến, giao điểm của 2 đường thẳng + đường thẳng và mặt phẳng
4, nêu các phương pháp chứng mình 2 đường thẳng song song
5, nêu các phương pháp chứng mình đưởng thẳng // mp
6, nêu các phương pháp chứng mình mp//mp
7, cách xác định góc giữa 2 đưởng thẳng bất kì trong không gian
Cho tứ diện ABCD. Trên ba cạnh AB, AC, AD lần lượt lấy các điểm B', C', D' sao cho đường thẳng B'C' cắt đường thẳng BC tại K, đường thẳng C'D' cắt đường thẳng CD tại J, đường thẳng D'B' cắt đường thẳng DB tại I
a) Chứng minh ba điểm I, J, K thẳng hàng
b) Lấy điểm M ở giữa đoạn thẳng BD; điểm N ở giữa đoạn thẳng CD sao cho đường thẳng MN cắt đường thẳng BC và điểm F nằm bên trong tam giác ABC. Xác định thiết diện của tứ diện ABCD khi cắt bởi mặt phẳng (MNF)
Cho tứ diện ABCD và M là điểm bất kì thuộc miền trong của tam giác BCD. Qua M kẻ các tia song song với AB, AC, AD. Các tia này theo thứ tự cắt các mặt (ACD), (ABD), (ABC) lần lượt tại B', C', D'
Xác định các giao điểm B', C', D' ?
1.Cho hình chóp S.ABCD có đáy ABCD là hình bình hành và M,N,P lần lượt là trung điểm các cạnh AB,CD,SA. Q là 1 điểm thuộc đoạn SP.
a, Xác định thiết diện của hình chóp cắt bởi ( ∝) đi qua Q và song song với (SBN)
b, Xác định thiết diện của hình chóp cắt bởi ( Ф) đi qua MN song song với (SAD)
2. Cho lăng trụ ABC.A'B'C'. Gọi M,N,P là trung trọng tâm các tam giác AA'B, CA'C', CBC'
a, Xác định giao tuyến 2 mặt phẳng (ABC) và (BA'C')
b, Chứng minh MN // (BA'C'), (MNP) // (BA'C')
c, Xác định thiết diện của lăng trụ khi cắt bởi mặt phẳng (MNP) Tính diện tích thiết diện biết tam giác BA'C' là tam giác đều cạnh a
3, Cho hình hộp ABCD.A'B'C'D' có tất cả các mặt là hình vuông cạnh a. Trên các cạnh AB,CC',C'D' và AA' lấy các điểm M,N,P,Q sao cho AM = C'N = C'P = AQ = x ( 0 <= x <= a)
a, Chứng minh M,N,P,Q đồng phẳng và Mp,Nq cắt nhau tại 1 điểm cố định
b, Chứng minh MNPQ đi qua 1 đường thẳng cố định
c, Dựng thiết diện của hình hộp khi cắt bởi (MNPQ). Tìm GTLN và GTNN của chu vi thiết diện