Cho hai hình thang ABCD và ABEF có chung đáy lớn AB và không cùng nằm trong một mặt phẳng :
a) Tìm giao tuyến của các mặt phẳng sau :
(AEC) và (BFD); (BCE) và (ADF)
b) Lấy M là điểm thuộc đoạn DF. Tìm giao điểm của đường thẳng AM với mặt phẳng (BCE)
c) Chứng minh hai đường thẳng AC và BF không cắt nhau
Cho hình bình hành ABCD. Qua A, B, C, D lần lượt vẽ 4 nửa đường thẳng \(Ax,By,Cz,Dt\) ở cùng phía đối với mặt phẳng (ABCD), song song với nhau và không nằm trong mặt phẳng (ABCD). Một mặt phẳng \(\left(\beta\right)\) lần lượt cắt \(Ax,By,Cz,Dt\) tại A', B', C', D'
a) Chứng minh mặt phẳng (\(Ax,By\)) song song với mặt phẳng (\(Cz,Dt\)) ?
b) Gọi \(I=AC\cap BD;J=A'C'\cap B'D'\). Chứng minh IJ song song với AA' ?
c) Cho \(AA'=a;BB'=b;CC'=c\). Hãy tính \(DD'\) ?
Cho hình lập phương ABCD.A'B'C'D' . Gọi R, N, Q là các điểm thuộc các cạnh A'D', BC, C'D'
a) Tìm giao điểm I và K của đường thẳng RQ với các mặt phẳng (AA'B'B), (BB'C'C)
b) Tìm giao điểm P và J của đường thẳng NK với các mặt phẳng (CC'D'D), (AA'B'B)
c) Tìm giao điểm S và M của đường thẳng IJ với các mặt phặng (ADD'A'), (ABCD)
d) Tìm giao tuyến của mặt phẳng (NQR) với các mặt phẳng của hình lập phương
e) Tìm thiết diện của mặt phẳng (NQR) với hình lập phương
Cho 3 tia ox,oy,oz trong không gian cho góc xoy=120,yoz=90, zox=60 trong ba tia ấy lần lượt lấy các điểm sao cho OA=OB=OC=a
a) định hình dạng của tam giác ABC và vị trí của chân đường vuông góc hạ từ O xuống mặt phẳng ABC
b) xác định các góc đo mà mặt phẳng (OBC) và (OCA) tạo bởi mặt phẳng ABC
Cho tứ diện ABCD và điểm M nằm trong tam giác BCD
a) Dựng đường thẳng qua M song song với hai mặt phẳng (ABC) và (ABD). Giả sử đường thẳng này cắt mặt phẳng (ACD) tại B'
Chứng minh rằng AB', BM và CD đồng quy tại một điểm
b) Chứng minh :
\(\dfrac{MB'}{BC}=\dfrac{dt\left(\Delta MCD\right)}{dt\left(\Delta BCD\right)}\)
c) Đường thẳng song song với hai mặt phẳng (ACB) và (ACD) kẻ từ M cắt (ABD) tại C' và đường thẳng song song với hai mặt phẳng (ADC) và (ADB) kẻ từ M cắt (ABC) tại D'.
Chứng minh rằng :
\(\dfrac{MB'}{BA}+\dfrac{MC'}{CA}+\dfrac{MD'}{DA}=1\)
Cho hình chóp S.ABCD, có đáy là hình bình hành. Gọi C' là trung điểm của SC và M là một điểm di động trên cạnh SAa. Mặt phẳng (P) di động luôn đi qua C'M và song song với BC
a) Xác định thiết diện (P) cắt hình chóp S.ABCD. Xác định vị trí điểm M để thiết diện là hình bình hành
b) Khi M di động trên cạnh SA, thì giao điểm của hai cạnh đối của thiết diện chạy trên đường nào ?
Cho tứ diện ABCD. Trên ba cạnh AB, AC, AD lần lượt lấy các điểm B', C', D' sao cho đường thẳng B'C' cắt đường thẳng BC tại K, đường thẳng C'D' cắt đường thẳng CD tại J, đường thẳng D'B' cắt đường thẳng DB tại I
a) Chứng minh ba điểm I, J, K thẳng hàng
b) Lấy điểm M ở giữa đoạn thẳng BD; điểm N ở giữa đoạn thẳng CD sao cho đường thẳng MN cắt đường thẳng BC và điểm F nằm bên trong tam giác ABC. Xác định thiết diện của tứ diện ABCD khi cắt bởi mặt phẳng (MNF)
Cho hình chóp tứ giác S.ABCD \(\)có đáy ABCD là hình bình hành. Gọi M là trung điểm của cạnh SC. Gọi I là giao điểm của đường thẳng AM với mặt phẳng (SBD). Khi đó tỉ số \(\dfrac{MA}{IA}\) bằng bao nhiêu?
A. \(\dfrac{4}{3}\)
B. 3
C. 2
D. \(\dfrac{3}{2}\)
Cho hình hộp ABCD.A'B'C'D'. Gọi M và N lần lượt là trung điểm của hai cạnh bên AA' và CC'. Một điểm P nằm trên cạnh bên DD'.
a) Xác định giao điểm Q của đường thẳng BB' với mặt phẳng (MNP)
b) Mặt phẳng (MNP) cắt hình hộp theo một thiết diện. Thiết diện đó có tính chất gì ?
c) Tìm giao tuyến của mặt phẳng (MNP) với mặt phẳng (ABCD) của hình hộp