Theo de bai ta co: \(x=\dfrac{y^2}{z}\Rightarrow\dfrac{z}{x}=\dfrac{z^2}{y^2}\left(1\right)\)
Va \(y=\dfrac{z^2}{x}\left(2\right)\)
Tu (1),(2) suy ra y=z \(\Rightarrow x=y=z\)
suy ra A=1
Theo de bai ta co: \(x=\dfrac{y^2}{z}\Rightarrow\dfrac{z}{x}=\dfrac{z^2}{y^2}\left(1\right)\)
Va \(y=\dfrac{z^2}{x}\left(2\right)\)
Tu (1),(2) suy ra y=z \(\Rightarrow x=y=z\)
suy ra A=1
cho x,y,z la 3 so thuc thoa man x+y+z=a;\(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=\dfrac{1}{a}\) tinh S=(\(x^5-a^5\))(\(y^7-a^7\))(\(z^9-a^9\))
cho x,y,z la cac so nguyen duong thoa man \(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=2015\)
tinh gia tri lon nhat cua bieu thuc P=\(\dfrac{xy}{x^3+y^3}+\dfrac{yz}{y^3+z^3}+\dfrac{zx}{z^{3+x^3}}\)
Hệ phương trình có nghiệm là \(\left\{{}\begin{matrix}x+y+z=9\\x.y+y.z+z.x=27\\\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=1\end{matrix}\right.\)
1. Chứng minh rằng: phương trình \(x^2-\left(m-1\right)x+2m-7=0\) luôn có 2 nghiệm phân biệt.
Tìm GTNN của \(T=\dfrac{1}{\left(x_1-1\right)^{2018}}+\dfrac{1}{\left(x_2-1\right)^{2018}}\) với \(x_1,x_2\) là 2 nghiệm của phương trình.
2. Giải phương trình \(\left(x+1\right)\sqrt{2x^2-1}=\left(x-1\right)\left(2x-1\right)\)
3. Giải hệ phương trình \(\left\{{}\begin{matrix}x\left(x^2+\left(y-z\right)^2\right)=2\\y\left(y^2+\left(z-x\right)^2\right)=16\\z\left(z^2+\left(x-y\right)^2\right)=30\end{matrix}\right.\)
giải các hệ phương tình sau :
1) \(\left\{{}\begin{matrix}x+y+\dfrac{1}{x}+\dfrac{1}{y}=5\\x^2+y^2+\dfrac{1}{x^2}+\dfrac{1}{y^2}=9\end{matrix}\right.\)
2) \(\left\{{}\begin{matrix}x\left(3x+2y\right)\left(x+1\right)=12\\x^2+2y+4x-8=0\end{matrix}\right.\)
3) \(\left\{{}\begin{matrix}x-3y=\dfrac{4y}{x}\\y-3x=\dfrac{4x}{y}\end{matrix}\right.\)
giúp mình với ạ ><
Cho x, y thỏa mãn \(\sqrt{x+y-\dfrac{2}{3}}\)=\(\sqrt{x}+\sqrt{y}-\sqrt{\dfrac{2}{3}}\) , tính tích xy (\(\ne0\)).
Cho hàm số y =\(\dfrac{2x-1}{x+2}\) (C) và đường thẳng d : y = mx - 2 . tìm m để (C) cắt d tại hai điểm phân biệt A , B sao cho I ( 2 ;0 ) là trung điểm của AB
Tìm n thuộc Z biết:
n^2+2n+11 chia hết cho n+1
Tìm x,y thuộc Z biết:
a) 2^x+624=5y
b) x^2-y^2=2018
Giải các hệ phương trình :
a) \(\left\{{}\begin{matrix}-7x+3y=-5\\5x-2y=4\end{matrix}\right.\)
b) \(\left\{{}\begin{matrix}4x-2y=6\\-2x+y=-3\end{matrix}\right.\)
c) \(\left\{{}\begin{matrix}-0,5x+0,4y=0,7\\0,3x-0,2y=0,4\end{matrix}\right.\)
d) \(\left\{{}\begin{matrix}\dfrac{3}{5}x-\dfrac{4}{3}y=\dfrac{2}{5}\\-\dfrac{2}{3}x-\dfrac{5}{9}y=\dfrac{4}{3}\end{matrix}\right.\)