a) \(\dfrac{a}{2}=\dfrac{b}{3};\dfrac{b}{4}=\dfrac{c}{5}\) và a+b+c=2 d) \(\dfrac{x+1}{3}=\dfrac{y-2}{4}=\dfrac{z-1}{13}\) và 2x-3y+z=42
b) 2a = 3b = 5c và a+b-c =3 i) x:y:z = 2:3:5 và x*y*z=810
c) \(\dfrac{x}{7}=\dfrac{y}{3}\) và x - 42 =y \(\dfrac{x}{2}=\dfrac{y}{3};\dfrac{y}{4}=\dfrac{z}{5}\) và x2 - y2 = -16
các bạn giúp mình với, mình k biết làm. help me!!!!!
Bài 1:
a) Cho a(y+z) = b(z+c) = c(x+y) Tính: \(\dfrac{y-z}{a\left(b-c\right)}=\dfrac{z-c}{b\left(c-a\right)}=\dfrac{x-y}{c\left(a-b\right)}\)
b) \(Cho\dfrac{a}{2014}=\dfrac{b}{2015}=\dfrac{c}{2016}cm:4\left(a-b\right)\left(b-c\right)=\left(c-a\right)^2\)
c) \(\dfrac{a}{a'}+\dfrac{b'}{b}=1\) và \(\dfrac{b}{b'}+\dfrac{c'}{c}=1\)
cm: abc+a'b'c'=0
bài 4:
a) \(\dfrac{3x-y}{x+y}=\dfrac{3}{4}\) Tính: \(\dfrac{x}{y}\)
b) \(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{4}\) Tính P = \(\dfrac{xy+yz+xz}{x^2+y^2-z^2}\)
c) \(\dfrac{a}{b+c+d}=\dfrac{b}{a+c+d}=\dfrac{c}{a+b+d}=\dfrac{d}{a+b+c}\)
Tính : P = \(\dfrac{a+b}{c+d}+\dfrac{c+b}{a+d}=\dfrac{c+d}{a+b}=\dfrac{a+d}{c+b}\)
d) \(\dfrac{a+b}{c}=\dfrac{b+c}{a}=\dfrac{c+a}{b}\) Tính: \(P=\left(1+\dfrac{a}{b}\right)\left(1+\dfrac{b}{c}\right)\left(1+\dfrac{c}{a}\right)\)
Câu 1: Cho x, y, z là các số ≠ 0 và x+\(\dfrac{1}{y}\) =y+\(\dfrac{1}{z}\) =z+\(\dfrac{1}{x}\) . Chứng minh rằng
Hoặc x=y=z, hoặc x2y2z2=1.
Câu 2: Cho abc ≠ 0 và a+b+c ≠ 0. Tìm x, biết: \(\dfrac{a+b-x}{c}\) +\(\dfrac{a+c-x}{b}\) +\(\dfrac{b+c-x}{a}\) +\(\dfrac{4x}{a+b+c}\) =1
Cho x,y,z,a,b,c khác 0 và \(\dfrac{x}{a}=\dfrac{y}{b}=\dfrac{z}{c}\).Chứng minh rằng
a) \(\dfrac{a^2}{x}=\dfrac{b^2}{y}=\dfrac{c^2}{z}=\dfrac{\left(a+b+c\right)^2}{x+y+z}\)
b) \(\dfrac{x^2+y^2+z^2}{\left(ax+by+cz\right)}=\dfrac{1}{a^2+b^2+c^2}\)
Cho các số x, y, z, t thỏa mãn xyzt=1. Tính P= \(\dfrac{1}{1+x+xy+xyz}+\dfrac{1}{1+y+yz+yzt}+\dfrac{1}{1+z+zt+ztx}+\dfrac{1}{1+t+tx+txy}\)
Khuya rồi các bạn cố gắng giúp mk nhé !!! THANKS TRC
1. Cho \(B=\dfrac{1}{2}\cdot\dfrac{3}{4}\cdot\dfrac{5}{6}\cdot\cdot\cdot\dfrac{99}{100}\) Chứng minh rằng : \(\dfrac{1}{15}< B< \dfrac{1}{10}\)
2.Tìm x,y,z biết : \(\dfrac{x}{6}=\dfrac{y}{-4}=\dfrac{z}{3}\) và \(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=3\)
3.Chứng minh rằng nếu \(\dfrac{x}{a+2b+c}=\dfrac{y}{2a+b-c}=\dfrac{z}{4a-4b+c}\) thì \(\dfrac{a}{x+2y+z}=\dfrac{b}{2x+y-z}=\dfrac{c}{4x-4y+z}\)
4.Cho x,y,z,t là các số thực dương. Chứng minh rằng biểu thức sau không nhận giá trị nguyên :
\(M=\dfrac{x}{x+y+z}=\dfrac{y}{y+z+t}=\dfrac{z}{z+t+x}=\dfrac{t}{t+x+y}\)
5.Cho các số nguyên dương a,b,c,d,m,n,p thỏa mãn :\(a^2+b^2+c^2=m^2+n^2+p^2\) . Chứng minh rằng tổng \(a+b+c+m+n+p\) là hợp số
biết xyz=1
tính A=\(\dfrac{x}{xy+x+1}+\dfrac{y}{yz+y+1}+\dfrac{z}{xz+z+1}\)
Câu 1: tìm x biết \(\left[\dfrac{1}{\left(2.5\right)}+\dfrac{1}{\left(5.8\right)}+\dfrac{1}{\left(8.11\right)}+.....+\dfrac{1}{\left(65.68\right)}\right].x-\dfrac{7}{34}=\dfrac{19}{68}\)
Câu 2: tìm số tự nhiên n biết 2n +2n-2 = 5/2
Câu 3: nếu\(0< a< b< c< d< e< f\)
và \(\left(a-b\right)\left(c-d\right)\left(e-f\right)x=\left(b-a\right)\left(d-c\right)\left(f-e\right)\)thì x=..........
Câu 4: cho 3 số x;y;z khác 0 thỏa mãn điều kiện \(\dfrac{y+z-x}{x}=\dfrac{z+x-y}{y}=\dfrac{x+y-z}{z}\)
khi đó \(B=\left(1+\dfrac{x}{y}\right)\left(1+\dfrac{y}{z}\right)\left(1+\dfrac{z}{x}\right)\)có giá trị bằng ...............
Câu 5: số giá trị của x thỏa mãn \(|x+1|+|x-1012|+|x+3|+|x+1013|=2013\)
Câu 6: biết tổng các chữ số của 1 số k đổi khi chia số đó cho 5. số dư của số đó khi chia cho 9 là...........
Câu 7: độ dài cạnh góc vuông của 1 tam giác vuông can ABC tại A có đường phân giác kẻ từ đỉnh A bằng \(\dfrac{3\sqrt{2}}{2}cm\)là .........cm
Câu 8: rút gọn \(A=\dfrac{\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+....+\dfrac{1}{2013}}{2012+\dfrac{2012}{2}+\dfrac{2011}{3}+...+\dfrac{1}{2013}}\)ta đc A=............
Câu 9: cho \(\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{a};a+b+c\ne0\)và \(a=2014\) khi đó \(a-\dfrac{2}{19}b+\dfrac{5}{53}c=.......\)
Câu 10: tìm x;y;z biết\(\dfrac{x}{z+y+1}=\dfrac{y}{x+z+1}=\dfrac{z}{x+y-2}=x+y+z\) trả lời x=....; y=....; z=....
Cho các số x,y,z,t thoả mãn điều kiện xyzt = 1
Tính tổng : P = \(\dfrac{1}{1+x+xy+xyz}+\dfrac{1}{1+y+yz+yzt}+\dfrac{1}{1+z+zt+ztx}+\dfrac{1}{1+t+tx+txy}\)