Sửa đề tí:
\(\dfrac{a}{x+1}+\dfrac{b}{x-2}=\dfrac{32x-19}{x^2-x-2}\)
\(\Leftrightarrow\dfrac{ax-2a}{x^2-x-2}+\dfrac{bx+b}{x^2-x-2}=\dfrac{32x-19}{x^2-x-2}\)
\(\Leftrightarrow ax-2a+bx+b=32x-19\)
\(\Rightarrow ax+bx=32x\)
\(\Rightarrow a+b=32\)
\(\Rightarrow b=32-a\)
\(\Rightarrow b-2a=-19\)
Hay \(32-a-2a=-19\)
\(\Leftrightarrow-3a=-51\)
\(\Leftrightarrow a=17\)
\(\Leftrightarrow b=15\)
Vậy tích của \(a.b\) là: \(a.b=17.15=255\)