Cho \(\dfrac{a}{b}=\dfrac{b}{c}\)
Chứng minh rằng: \(\dfrac{a^2+b^2}{b^2+c^2}=\dfrac{a}{c}\)
Câu cuối bài thi học kì của bọn mình :((
1. Cho \(\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{d}\). Chứng minh rằng \(\left(\dfrac{a+b+c}{b+c+d}\right)^3=\dfrac{a}{d}\)
2. Cho \(\dfrac{a}{2003}=\dfrac{b}{2004}=\dfrac{c}{2005}\). Chứng minh rằng \(4\left(a-b\right)\left(b-c\right)=\left(c-a\right)^2\)
Cho \(a+b+c=a^2+b^2+c^2=1\) và \(\dfrac{x}{a}=\dfrac{y}{b}=\dfrac{z}{c}\) \(\left(a\ne0,b\ne0,c\ne0\right)\)
Chứng minh rằng: \(\left(x+y+z\right)^2=x^2+y^2+z^2\)
Cho tỉ lệ thức \(\dfrac{a}{b}=\dfrac{c}{d}\). Hãy chứng minh rằng :
\(\dfrac{a}{a+b}=\dfrac{c}{c+d}\)
\(\dfrac{a+2c}{b+2d}=\dfrac{a-2c}{b-2d}\)
\(\dfrac{a^2+2b^2}{c^2+2d^2}=\dfrac{a^2-2b^2}{c^2-2d^2}\)
\(\dfrac{ab}{cd}=\dfrac{\left(a+b\right)^2}{\left(c+d\right)^2}\)
chứng minh rằng \(a^2=bc(a\ne b;a\ne c)\)thì\(\dfrac{a+b}{a-b}=\dfrac{c+a}{c-a}\)
Cho tỉ lệ thức \(\dfrac{a}{b}=\dfrac{c}{d}\) chứng minh rằng \(\dfrac{ab}{cd}=\dfrac{\left(a+b\right)^2}{\left(c+d\right)^2}\)
1. Tìm x, y biết:
a) \(\dfrac{x-1}{5}=\dfrac{y-2}{3}=\dfrac{z-2}{2}\) và x + 2y - z = 6
b) \(\dfrac{x}{y}=\dfrac{2}{3}\) và x2 + y2 = 52
2. Cho \(\dfrac{a}{b}=\dfrac{c}{d}\) . Chứng minh rằng:
a) \(\dfrac{a+b}{b}=\dfrac{c+d}{d}\)
b) \(\dfrac{ac}{bd}=\dfrac{a^2+c^2}{b^2+d^2}\)
CHO b2=ac
chứng minh rằng:
\(\dfrac{a^{2^{ }}+b^2}{b^2+c^2}=\dfrac{â}{b}\)